Random-Variate Generation

A random variate is a variable generated from uniformly
distributed pseudorandom numbers. Depending on how
they are generated, a random variate can be uniformly or
nonuniformly distributed. Random variates are frequently
used as the input to simulation models

(Neelamkavil 1987, p. 119).

Random Variate

In simulation, it's often necessary to generate random
observations from probability distributions in order
to determine future event times. Such a generated
observation is referred to as a random variate.
e Assume that a distribution has been specified.

e Some widely-used techniques for generating random
variates.

- Inverse transform

- Convolution

- Acceptance-rejection
- Composition (not discussed)




Inverse Transform Technique

Used to sample from

- Exponential
- Uniform
- Weibull
- Triangular
- Empirical
- Discrete distributions
Generate U ~ U (0, 1)
Return X = F! (U).
- Finverse denotes the solution of the equation r = F(x) in terms of r,
not 1/F.
- Most useful when the cdf, F(X), is of simple form that its inverse
can be easily computed.
R, Ry, R,, ... represent numbers uniformly distributed on (O, 1)

Inverse Transform -
Exponential Distribution

Goal: develop a procedure for generating values X,
X5, ... which have an exponential distribution.

Steps:

Compute the cdf of the desired random variable X.
» For exponential, the cdfis F(x) =1-e't, x =0

Set F(X) = R on the range of X.

Solve the equation F(X) =R for X in terms of R.

« For exponential, see (8.1): random-variate generator for the
exponential distrituion.

Generate uniform random numbers, R, R,, .. and compute the
desired random variates, see (8.3)

Example 8.1




Inverse Transform -
Exponential Distribution

* Why does the random variables X; generated
by this procedure have exponential
distribution?

- See figure 8.2
- Compute the cumulative probability for x,

* P(X; =%g) = P(R; = F(Xo)) = F(Xo)
« Since 0 = F(Xy) =1, P(R, = F(Xy)) = F(X,) shows that R, is
uniformly distributed.

Inverse Transform -
Other Continuous Distributions

e Same steps can be applied to uniform, Weibull, and triangle
distributions.
e Empirical continuous distributions:
- No known theoretical distributions can be found.
- Interpolate between the observed data points to fill in the gaps.
« First sort the data points in increasing order.
« Assign a probability to each interval.

« Draw the observed empirical cdf, F(x) hat and compute the slope of the ith line
segment.

« Calculate F(R).
- What if the sample size is large?

« Summarize the data into a frequency distribution with a much smaller # of
intervals and fit the empirical cdf to the frequency distribution.

e Use (8.11
. Relat(ive s)hort intervals are recommended to give more accurate underlying cdf.
* Trade-off between accuracy of the estimating cdf and computational efficiency.
e Continuous distributions without a closed-form inverse:
- Examples include normal, gamma, and beta
- Approximate the inverse cdf.




Inverse Transform -
Discrete Distributions

Use the inverse transform technique either
numerically or algebraically.
Other techniques are sometimes used for certain
distributions, such as the convolution technique for
the binomial distribution.
Empirical distributions
- Table-lookup approach: example 8.4.
« Interpolation is not required.
- Algebraic approach: example 8.5
The geometric distribution: example 8.7
- Compare with equation (8.1)

Transformation for Normal Distribution

Given X ~ N(0O, 1), we can obtain X' ~ N(i, s2) by setting X' = p + sX. So,
we restrict attention to generating standard normal random variates.
A commonly used method for generating N(O, 1) random variates was
developed by Box and Muller. There are faster algorithms, but this
method maintains a 1-1 correspondence between the random numbers
used and the N(O, 1) random variates produced.

Generate Z, and Z, as 11D U(0, 1) from two independent random
variables R, and R,, then set

- Z,=(-2 In R)Y2 cos (2pRy)

- Z,=(-2InRy)¥2sin (2pR,)

- Z;and Z, are 11D N(0O, 1) random variates.

This method gives the desired random variates in pairs.

Note: this method is valid in principle, i.e., if R, and R, are truly
independent. There is a problem if R, and R, are two adjacent random
numbers produced by a linear congruentlal generator In this case, Z,
and Z, are not truly independently normally distributed.




Convolution Method

e Applies when the random variable X can be expressed as a sum
of other random variables that are identically independent
distributed and easier to generate than X
- X=EY Y, Y,

- X has distribution function F and Y, has distribution function G.

Generate m Y; 11D each with distribution function G.
Return X =Y, + Y, + ..+ Y,

N =

e Erlang RV X (K, ?): sum of K independent exponential random
variables, X; (i = 1, 2, ..K), each having mean 1/K?.
- X=S8KX; where X; = -1/K? InR;
- X=-1/K? In (? KR;), used when K is small
- Example 8.9

Acceptance-Rejection Technique

» Previous methods are more direct, while A-R is less
direct. Used when the direct methods fail or are
inefficient.

e Basic idea and steps:

1. Generate a random number R.

2. Test a condition based on R and some computation derived
for the desired distribution.

3. If the condition is satisfied, return X computed from a
formula > accept.

otherwise - reject, go to step 1 and try again.
e Different distributions have different steps and
formulas.
- Poisson distribution: examples 8.10 & 8.11
- Gamma distribution: example 8.12




Generating Continuous Random Variates

Uniform: inverse-transform
Exponential: inverse-transform
Erlang: convolution

Gamma: acceptance-rejection
Weibull: inverse-transform

Normal: direct transformation, see section
8.2

Triangular: inverse-transform
Empirical: inverse-transform

Generating Discrete Random Variates

Bernoulli: inverse-transform

Uniform: inverse-transform
Arbitrary discrete: inverse-transform
Binomial: convolution

Geometric: inverse-transform
Negative binomial: convolution
Poisson: acceptance-rejection




