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Chapter 11
Output Analysis for a Single Model

Introduction

• Output analysis is the examination of data 
generated by a simulation.  OA is used to:
– predict the performance of a system or 
– compare the performance of 2 or more alternative 

system designs.
• Issues of output analysis:

– The sequence of output variables Y1, Y2, …, Yn may be 
autocorrelated.  Therefore, the classical methods of 
statistics which assume independence are not directly 
application to output analysis.

– Initial conditions of the system may influence the output 
data.
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Types of Simulation wrt Output Analysis

• When analyzing simulation output data, we 
distinguish:
– Terminating or transient simulations:

• Runs for some duration of time, TE, until a specified event 
(or set of events) happens.  (Examples 11.1-11.3)

• Depends on both the objectives of the simulation and the 
nature of the system.

– Nonterminating or steady-state simulations
• Runs continuously or over a long period of time.
• Study steady-state, or long-run, properties of the system 

(not influenced by the initial conditions).
• TE  is not determined by the nature of the problem (e.g. end 

of day or a certain period of time), rather it is set as one 
parameter in the simulation design.

•

Stochastic Nature of Output Data

• Some of the model input variables are random 
variables and the model is an input-output 
transformation, it follows that the model output 
variables are random variables.  Cases to discuss:

1. Output data from various runs are independent 
and identically distributed.  Classical methods of 
statistics may be used because the data 
constitute a random sample. 

• point estimate and 
• estimation of error in the point estimate
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Stochastic Nature of Output Data

2. The effects of correlation and initial conditions 
on the estimation of long-run mean measures of 
performance.  

• See Table 11.2.  The sequence of batches is 
autocorrelated because all of the data are obtained 
from within one replication.

• Example 11.9: Avoid direct statistical analysis of the 
within-replication output {Di, i = 1, 2, ..}, because the 
sequence is, in general, a nonstationary autocorrelated
stochastic process.  In other words, D1, D2, …, are not 
identically distributed.  If Di is small, Di+1 will tend to be 
relatively small.

Measures of Performance and 
Their Estimation

• It’s desired to have a point estimate and an 
interval estimate.  The later is a measure 
of the error in the point estimate.

• Simulation output data of the form {Y1, Y2, 
...} for estimating θ: discrete-time data.

• Simulation output data of the form {Y(t), 0 
<= t <= TE} for estimating φ: continuous-
time data, cause t is continuous valued.

• The parameter θ is an ordinary mean; φ is 
time-weighted mean.
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Point Estimation

• θ hat = 1/n ΣnYi: sample mean based on a sample of 
size n.

• The point estimator θ hat is unbiased for θ hat if 
E(θ hat) = θ.  But in general, E(θ hat) ≠ θ.

• E(θ hat) - θ is called the bias in the point 
estimator θ hat.
– Examples of estimator include w and wQ hat discussed in 

the queuing modeling, Yi is the time spent in the system 
by customer i.

• φ hat = ∫TE Y(t)dt: time average of Y(t) over [0, TE]
– Examples include L hat and LQ hat.

Interval Estimation

• Valid interval estimation requires a method of estimating 
the variance of the point estimator, θ hat or φ hat.

• σ2 (θ hat) = var (θ hat) : true variance of a point estimator.
• σ2 hat (θ hat): estimator of σ2 (θ hat) based on the data {Y1, 

Y2, …, Yn}.
• t = (θ hat - θ) / σ2 hat (θ hat) is approximately t-distributed 

with some degrees of freedom, f, if 
σ2 hat (θ hat) is approximately unbiased.

• Confidence interval, 100(1-α)%, for θ is given by
θ hat ± tα/2,f σ hat (θ hat) or
θ hat - tα/2,f σ hat (θ hat) ≤ θ ≤ θ hat + tα/2,f σ hat (θ hat)

• One of the main problems in simulation output analysis is 
obtaining approximately unbiased estimate σ2(θ hat), the 
variance of the point estimator.
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Output Analysis for Terminating Simulations

• The goal is to estimate θ.
• The method used is called method of independent 

replications.
– The simulation is repeated R times, each run using a 

different random-number stream and independently 
chosen initial conditions.

– Yri: ith observation within replication r.
– For fixed replication r, Yr1, Yr2, …, is an autocorrelated

sequence within replication r; but across different 
replications, Yri and Ysi are statistically independent.

– θr hat = 1/nr ΣnrYri, r = 1, 2, …, R
– The R sample means are statistically independent and 

identically distributed.  Thus, classical methods of 
confidence interval estimation can be applied.

– Similarly, φ is defined by (11.6)

Statistics Review (again?)

• Y1, …, Yn are statistically independent observations.
• Sample mean & sample variance S2?
• The variance of θ hat is given by 

s2 (θ hat) = s2 / n
• An unbiased estimator of s2 (θ hat), with f = n – 1 degrees of 

freedom, is provided by
s2 hat (θ hat) = S2 / n

• Confidence interval: see (11.10)
• s2 hat (θ) = S / vn, denoted by s.e.(θ hat), is called standard 

error of the input parameter θ hat.
– A measure of the precision of a point estimator, or
– The average deviation to be expected between the point 

estimator θ hat and the true mean θ.
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Confidence-Interval Estimation for a Fixed 
Number of Replications

• If R independent replications are made,
– The overall point estimate, θ hat, is computed by θ hat = 

1/R ? R θr hat
– Estimate of the variance of θ hat is computed by s2 hat 

(θ hat) = S2 / n = 
1/[(R-1)R] ? R (θr hat - θ hat)2

– A 100(1-α)% confidence interval is also defined by (11.10)
– As R increases, the standard error s hat (θ hat) tends to 

become smaller and approach zero.
• Similarly, if the output data are of the form 

{Yr(t), 0 <= t <= TE}, we use (11.17, 11.18)
• Example 11.10

Confidence Intervals with 
Specified Precision

• Half-length (h.l.) of a 100(1-α)% confidence interval for a mean θ, 
based on the t-distribution, is h.l. = tα/2, R-1 s hat (θ hat), where s
hat (θ hat) = S / vR.

• If an error ε is specified, i.e., |θ - θ hat| < ε with high probability 1 -
α., then we need a large sample size, R, to satisfy P(|θ - θ hat| < ε) =
1 - α.  Steps:
– Make R0 independent replications, R0 = 2, least 4 or 5 is recommended; 

10 or more is desirable.
– Obtain an initial estimate S0

2 of the population variance s2 based on R0
replications.  Thus,

h.l. = tα/2, R-1 S0 / vR = ε ⇒ R = (tα/2, R-1 S0 / ε)2

– tα/2, R-1 = zα/2, an initial estimate for R is R = (zα/2 S0 / ε)2.
tα/2, R-1 ˜ zα/2 for large R.

– After determining R, collect R – R0 additional observations and form the 
100(1-α)% confidence interval.  See (11.23)

– If the confidence interval is too large, the procedure may be repeated 
to determine an even larger sample size.

• Example 11.12.
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Output Analysis for 
Steady-State Simulations

• The goal is to estimate a steady-state or long-run 
characteristics of the system.  For steady-state, the 
measure of performance, θ, to be estimated is defined by θ
= lim 1/n ? nYi

n → ∞

• The value of θ is independent of the initial conditions.
• In practice, simulation stops after some number of 

observations, n, have been collected; or for some length of 
time TE.  The sample size n (or TE) is a design choice; not 
determined by the nature of the problem.  To choose 
simulation run length, we consider:
– The bias in the point estimator due to initial conditions.
– The desired precision of the input estimator.
– Budget constraints.

Initialization Bias in Steady-State Simulations

• Initial conditions may be artificial or unrealistic.  
• Methods to reduce the point-estimator bias include:

– Intelligent initialization: initialize the simulation in a state that 
is more representative of long-run conditions.

• If the system exists, collect data on it and use them.
• If the system doesn’t exist, use any data on similar systems or 

build a simplified model that is mathematically solvable and collect 
data from it.

– Divide each simulation run into two phases:
• Initialization phase from time 0 to T0; and
• Data-collection phase from T0 to T0 + TE.
• See Figure 11.3.
• Choice of T0 (representative of steady-state behavior) and TE (long 

enough) is important.
• Example 11.14.
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How Much Data to Delete?

• For the second method, unfortunately, there is no widely accepted, 
objective and proven technique to determine how much data to 
delete to reduce initialization bias to a negligible level.

• Some points to consider:
– Ensemble averages will reveal a smoother trend as R increases.  Since 

each ensemble average is the sample mean of i.i.d. observations, a 
confidence interval based on the t-distribution can be placed around 
each point.  See figure 11.6.

– Use a moving average rather than the original ensemble averages. In a 
moving average, each plotted point is actually the average of several 
adjacent ensemble averages.

– Cumulative averages should only be used if it’s not feasible to computer 
ensemble averages.

– The more correlation present in simulation data, the longer it takes to 
Y.j bar to approach steady state.

– Different performance measures may approach steady-state at 
different rates.  It is important to examine each performance measure 
individually.

– No silver bullet.

Replication Method for 
Steady-State Simulations

• The method of independent replications can be used to 
estimate point-estimator variability and to construct a 
confidence interval.

• How? Make R replications, initializing and deleting from each 
one the same way.

• NOTE: bias is not affected by R; it is affected only by 
deleting more data (i.e., increasing T0) or extending the 
length of each run (increasing TE).  If significant bias 
remains in the point estimator and a large # of replications 
are used to reduce point estimator variability, the result can 
be misleading.
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Replication Method for 
Steady-State Simulations (2)

• When using the replication method, each replication is regarded as 
a single sample for the purpose of estimating θ.

• For replication r, define
Yr.(n, d) bar = 1 / (n – d) ∑nYrjj = d + 1

as the sample mean of all nondeleted observations in replication r.
• See Table 11.7 for Y.i, Yr. (n, d), and Y..(n,d).  Also Yr. bar and Y.. bar 

for abbreviation.
• E[Y..(n, d) bar] = θn,d
• To estimate the standard error of Y.. Bar, first compute the 

sample variance S2 as shown in (11.40)
• Standard error is given by s.e.(Y.. Bar) = S /√R.
• A 100(1-α)% confidence interval for θ, based on the t-distribution 

is given by (11.42)
• Examples 11.15 & 11.16

Sample Size in Steady-State Simulations
• In a steady-state simulation, a specified precision may be 

achieved either by increasing the # of replications (R) or by 
increasing the run length (TE).

• Example 11.17 shows the first approach (by increasing R)
• An alternative to increasing R is to increase total run length 

T0 + TE within each replication.
– If (R – R0) additional replications are needed, then an 

alternative is to increase the run length (T0 + TE ) in the same 
proportion (R/R0) to a new run length (R/R0)(T0+TE )

– Additional data will be deleted, from time 0 to time (R/R0) T0, 
and more data will be used to compute the point estimates.

– Figure 11.8 illustrates the approach.
– Advantage: bias may be further reduced
– Disadvantage: it may need to save the state of the model at 

time )(T0+TE ), and to be able to restart the model and run it 
for the additional required time.

– Example 11.18



10

Batch Means for Interval Estimation in 
Steady-State Simulations

• One disadvantage of the replication method is that data must be 
deleted on each replication.

• To reduce the issue, we may use an experiment design that is based 
on a single, long replication.  But one disadvantage of this is the 
problem to compute the standard error of the sample mean.  Also,
the data are dependent and usual estimator is biased.

• Batch means is a method developed to solve this problem by 
dividing the output data from one replication (after deletion) into a 
few large batches, and then treating the means of these batches 
as if they were independent.

• Compute the batch means (Yj bar) based on the form of the raw 
output data:
– Continuous:
– Discrete:
– The variance of the sample mean: (11.43)
– Y1 bar, Y2 bar, …, Yk bar are not independent; but if the batch size is 

sufficiently large, successive batch means will be approximately
independent.

Batch Means and Batch Size

• What is an acceptable batch size m?
– No widely accepted method.

• General guidelines:
– For a fixed sample size, 10 <= m <= 30 should be used.
– Lag-1 autocorrelation ρ1 = corr (Yj bar, Yj+1 bar) is usually 

studied to assess the dependence between batch means.
– Estimate lag-1 autocorrelation from a large number of 

batch means based on a smaller batch size (100 <= k <= 
400).  (Rebatching into a larger batch size is to get 
smaller autocorrelation).

– If the total sample size is to be chosen sequentially, then 
it is helpful to allow the batch size and # of batches to 
grow as the run length increases.
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Summary

• Before sound conclusions can be drawn on the basis of the 
simulation-generated output data, a proper statistical 
analysis is required.

• The simulation experiment: estimate the performance 
measures of the system.

• The statistical analysis: acquire some assurance that these 
estimates are sufficiently precise for the proposed use of 
the model.

• Terminating simulations vs. steady-state simulations.
– Initial conditions and the choice of run length.

• Standard error or a confidence interval can be used to 
measure the precision of point estimators.
– Use the method of independent replications to generate 

statistically independent observations and apply standard 
statistically methods.

– Batch means.

Batch Means and Batch Size

• General strategy:
1. Obtain output data from a single replication and delete 

as appropriate.
2. Compute the batch means (100 <= k <= 400) and estimate 

the sample lag-1 autocorrelation:
3. Check the correlation to see if it’s sufficiently small.

a. If <= 0.2, the rebatch the data into 30 <= k <= 40 batches 
and form a confidence interval using k – 1 degrees of 
freedom for t-test and estimate the variance.

b. If > 0.2, then extend the replication and repeat step 2.
4. Check on the confidence interval, examine the batch 

means for independence using : C = ??

• Example 11.19


