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Data and File Structures

Introduction to the Design and 
Specification of File Structures



Outline

• What are File Structures?
• Why Study File Structure Design
• Overview of File Structure Design



Definition

• A File Structure is a combination of 
representations for data in files and of 
operations for accessing the data.

• A File Structure allows applications to read, 
write and modify data. It might also support 
finding the data that matches some search 
criteria or reading through the data in some 
particular order.



Why Study File Structure Design?
I. Data Storage

• Computer Data can be stored in three kinds 
of locations:
– Primary Storage ==> Memory 

[Computer Memory]
– Secondary Storage [Online Disk/ Tape/

CDRom that can be accessed by the computer]
– Tertiary Storage ==> Archival Data 

[Offline Disk/Tape/ CDRom not directly 
available to the computer.]

Our
Focus



Why Study File Structure Design?
II. Memory versus Secondary Storage

• Secondary storage such as disks can pack thousands 
of megabytes in a small physical location.

• Computer Memory (RAM) is limited.
• However, relative to Memory, access to secondary 

storage is extremely slow [E.g., getting information 
from slow RAM takes 120. 10-9 seconds (= 120 
nanoseconds) while getting information from Disk takes   
30. 10-3 seconds (= 30 milliseconds)]



Why Study File Structure Design?
III. How Can Secondary Storage Access Time be 

Improved?
By improving the File Structure.

Since the details of the representation of the 
data and the implementation of the 
operations determine the efficiency of the 
file structure for particular applications, 
improving these details can help improve 
secondary storage access time.



Overview of File Structure Design
I. General Goals

• Get the information we need with one 
access to the disk.

• If that’s not possible, then get the 
information with as few accesses as 
possible.

• Group information so that we are likely to 
get everything we need with only one trip to 
the disk.



Overview of File Structure Design
II. Fixed versus Dynamic Files

• It is relatively easy to come up with file 
structure designs that meet the general goals 
when the files never change. 

• When files grow or shrink when 
information is added and deleted, it is much 
more difficult.



History of File Structures
I. Early Work

• Early Work assumed that files were on tape.
• Access was sequential and the cost of acces 

grew in direct proportion to the size of the 
file.



History of File Structures 
II. The emergence of Disks and Indexes

• As files grew very large, unaided sequential 
access was not a good solution.

• Disks allowed for direct access.
• Indexes made it possible to keep a list of 

keys and pointers in a small file that could 
be searched very quickly.

• With the key and pointer, the user had direct 
access to the large, primary file.



History of File Structures     
III. The emergence of Tree Structures

• As indexes also have a sequential flavour, when 
they grew too much, they also became difficult to 
manage.

• The idea of using tree structures to manage the 
index emerged in the early 60’s.

• However, trees can grow very unevenly as records 
are added and deleted, resulting in long searches 
requiring many disk accesses to find a record.



History of File Structures
IV. Balanced Trees

• In 1963, researchers came up with the idea                      
of AVL trees for data in memory.

• AVL trees, however, did not apply to files because they 
work well when tree nodes are composed of single records 
rather than dozens or hundreds of them.

• In the 1970’s came the idea of B-Trees which require an 
O(logk N) access time where N is the number of entries in 
the file and k, th number of entries indexed in a single block 
of the B-Tree structure --> B-Trees can guarantee that one 
can find one file entry among millions of others with only 3 
or 4 trips to the disk.



History of File Structures
V. Hash Tables

• Retrieving entries in 3 or 4 accesses is good, but it 
does not reach the goal of accessing data with a 
single request.

• From early on, Hashing was a good way to reach 
this goal with files that do not change size greatly 
over time.

• Recently, Extendible Dynamic Hashing guarantees 
one or at most two disk accesses no matter how big 
a file becomes.



Data and File Structures

Basic File Processing Operations



Outline
• Physical versus Logical Files
• Opening and Closing Files
• Reading, Writing and Seeking
• Special Characters in Files
• The Unix Directory Structure
• Physical Devices and Logical Files
• Unix File System Commands



Physical versus Logical Files
• Physical File: A collection of bytes stored on a disk 

or tape.
• Logical File: A “Channel” (like a telephone line) that 

hides the details of the file’s location and physical 
format to the program.

• When a program wants to use a particular file, “data”, 
the operating system must find the physical file called 
“data” and make the hookup by assigning a logical 
file to it. This logical file has a logical name which is 
what is used inside the program.



Opening Files

• Once we have a logical file identifier hooked up to 
a physical file or device, we need to declare what 
we intend to do with the file:

• Open an existing file
• Create a new file

a That makes the file ready to use by the program
aWe are positioned at the beginning of the file and 

are ready to read or write.



Opening Files in C and C++

• fd = open(filename, flags [, pmode]);
– fd = file descriptor
– filename = physical file name
– flags = O_APPEND, O_CREAT, O_EXCL, 

O_RDONLY, O_RDWR, O_TRUNC, O_WRONLY.
– pmode = rwe       rwe       rwe

111   101   001
owner    group   world



Closing Files

• Makes the logical file name available for another 
physical file (it’s like hanging up the telephone 
after a call).

• Ensures that everything has been written to the file 
[since data is written to a buffer prior to the file].

• Files are usually closed automatically by the 
operating system (unless the program is 
abnormally interrupted). 



Reading

• Read(Source_file, Destination_addr, Size)

• Source_file = location the program reads from, 
i.e., its logical file name

• Destination_addr = first address of the memory 
block where we want to store the data.

• Size =  how much information is being brought 
in from the file (byte count).  



Writing

• Write(Destination_file, Source_addr, Size)

• Destination_file = the logical file name where 
the data will be written.

• Source_addr = first address of the memory 
block where the data to be written is stored.

• Size = the number of bytes to be written.



Seeking
• A program does not necessarily have to read through 

a file sequentially: It can jump to specific locations in 
the file or to the end of file so as to append to it.

• The action of moving directly to a certain position in 
a file is often called seeking.

• Seek(Source_file, Offset)
– Source_file = the logical file name in which the 

seek will occur
– Offset = the number of positions in the file the 

pointer is to be moved from the start of the file.



Special Characters in Files I

• Sometimes, the operting system attempts to 
make “regular” user’s life easier by 
automatically adding or deleting characters 
for them.

• These modifications, however, make the life 
of programmers building sophisticated file 
structures (YOU) more complicated!



Special Characters in Files II: 
Examples

• Control-Z is added at the end of all files 
(MS-DOS). This is to signal an end-of-file.

• <Carriage-Return> + <Line-Feed> are 
added to the end of each line (again, MS-
DOS).

• <Carriage-Return> is removed and replaced 
by a character count on each line of text 
(VMS)



The Unix Directory Structure I

• In any computer systems, there are many files (100’s or 
1000’s). These files need to be organized using some 
method. In Unix, this is called the File System.

• The Unix File System is a tree-structured organization of 
directories. With the root of the tree represented by the 
character “/”.

• Each directory can contain regular files or other directories.
• The file name stored in a Unix directory corresponds to its 

physical name.



The Unix Directory Structure II

• Any file can be uniquely identified by giving it its 
absolute pathname. E.g., /usr6/mydir/addr.

• The directory you are in is called your current 
directory.

• You can refer to a file by the path relative to the 
current directory.

• “.” stands for the current directory and “..” stands 
for the parent directory.



Physical Devices and Logical 
Files

• Unix has a very general view of what a file is: it 
corresponds to a sequence of bytes with no worries 
about where the bytes are stored or where they come 
from.

• Magnetic disks or tapes can be thought of as files and 
so can the keyboard and the console.

• No matter what the physical form of a Unix file (real 
file or device), it is represented in the same way in 
Unix: by an integer.



Stdout, Stdin, Stderr

• Stdout --> Console
 fwrite(&ch, 1, 1, stdout);
• Stdin --> Keyboard
 fread(&ch, 1, 1, stdin);
• Stderr --> Standard Error (again, Console)
 [When the compiler detects an error, the 

error message is written in this file]



I/O Redirection and Pipes

• < filename [redirect stdin to “filename”]
• > filename [redirect stdout to “filename”]
 E.g., a.out < my-input > my-output
• program1 | program2 [take any stdout 

output from program1 and use it in place of 
any stdin input to program2.

 E.g., list | sort



Unix System Commands
• cat filenames --> Print the content of the named textfiles.
• tail filename --> Print the last 10 lines of the text file.
• cp file1 file2 --> Copy file1 to file2.
• mv file1 file2 --> Move (rename) file1 to file2.
• rm filenames --> Remove (delete) the named files.
• chmod mode filename --> Change the protection mode on 

the named file.
• ls --> List the contents of the directory.
• mkdir name --> Create a directory with the given name.
• rmdir name --> Remove the named directory.



Data and File Structures

Secondary Storage and System 
Software: Magnetic Disks 

&Tapes



Part I: Disks                     Outline
• The Organization of Disks
• Estimating Capacities and Space Needs
• Organizing Tracks by Sector
• Organizing Tracks by Block
• Non Data Overhead
• The Cost of a Disk Access
• Disk as Bottleneck



General Overview

Having learned how to manipulate files, we 
now learn about the nature and limitations 

of the devices and systems used to store and 
retrieve files, so that we can design good 

file structures that arrange the data in ways 
that minimize access costs given the device 

used by the system.



Disks: An Overview
• Disks belong to the category of Direct Access Storage 

Devices (DASDs) because they make it possible to access 
the data directly.

• This is in contrast to Serial Devices (e.g., Magnetic Tapes) 
which allows only serial access [all the data before the one 
we are interested in has to be read or written in order].

• Different Types of Disks:
– Hard Disk: High Capacity + Low Cost per bit.
– Floppy Disk: Cheap, but slow and holds little data. (zip 

disks: removable disk cartridges)
– Optical Disk (CD-ROM): Read Only, but holds a lot of 

data and can be reproduced cheaply. However, slow.



The Organization of Disks I

• The information stored on a disk is stored 
on the surface of one or more platters.

• The information is stored in successive 
tracks on the surface of the disk.

• Each track is often divided into a number of 
sectors which is the smallest addressable 
portion of a disk.



The Organization of Disks II

• When a read statement calls for a particular 
byte from a disk file, the computer’s 
operating system finds the correct platter, 
track and sector, reads the entire sector into 
a special area in memory called a buffer, 
and then finds the requested byte within that 
buffer.



The Organization of Disks III
• Disk drives typically have a number of platters and 

the tracks that are directly above and below one 
another form a cylinder.

• All the info on a single cylinder can be accessed 
without moving the arm that holds the read/write 
heads.

• Moving this arm is called seeking. The arm 
movement is usually the slowest part of reading 
information from a disk.



Estimating Capacities and Space 
Needs

• Track Capacity = number of sectors per 
track * bytes per sector

• Cylinder Capacity = number of tracks per 
cylinder * track capacity

• Drive Capacity = number of cylinders * 
cylinder capacity



Data Organization: I. Organizing 
Tracks per Sector

 The Physical Placement of Sectors
• The most practical logical organization of sectors on a 

track is that sectors are adjacent, fixed-sized segments 
of a track that happens to hold a file.

• Physically, however, this organization is not optimal: 
after reading the data, it takes the disk controller some 
time to process the received information before it is 
ready to accept more. If the sectors were physically 
adjacent, we would use the start of the next sector 
while processing the info just read in.



Data Organization: I. Organizing 
Tracks per Sector (Cont’d)

• Traditional Solution: Interleave the 
sectors. Namely, leave an interval of several 
physical sectors between logically adjacent 
sectors.

• Nowadays, however, the controller’s speed 
has improved so that no interleaving is 
necessary anymore.



Data Organization:I. Organizing 
Tracks by Sectors (Cont’d)

• The file can also be viewed as a series of 
clusters of sectors which represent a fixed 
number of (logically) contiguous sectors.

• Once a cluster has been found on a disk, all 
sectors in that cluster can be accessed without 
requiring an additional seek.

• The File Allocation Table ties logical sectors 
to the physical clusters they belong to. 



Data Organization:I. Organizing 
Tracks by Sectors (Cont’d)

• If there is a lot of free room on a disk, it may be 
possible to make a file consist entirely of contiguous 
clusters. ==> the file consists of one extent. ==> the 
file can be processed with a minimum of seeking 
time.

• If one extent is not enough, then divide the file into 
more extents.

• As the number of extents in a file increases, the file 
becomes more spread out on the disk, and the amount 
of seeking necessary increases.



Data Organization:I. Organizing 
Tracks by Sectors (Cont’d)

• There are 2 possible organizations for 
records (if the records are smaller than the 
sector size:

1. Store 1 record per sector
2. Store the records successively (i.e., 

one record may span two sectors



Data Organization:I. Organizing 
Tracks by Sectors (Cont’d)

 Trade-Offs
• Advantage of 1: Each record can be retrieved from 1 

sector.
• Disadvantage of 1: Loss of Space with each sector ==> 

Internal Fragmentation
• Advantage of 2: No internal fragmentation
• Disadvantage of 2: 2 sectors may need to be accessed to 

retrieve a single record.
• The use of clusters also leads to internal fragmentation.



Data Organization: II. Organizing 
Tracks by Block 

• Rather than being divided into sectors, the disk tracks 
may be divided into user-defined blocks.

• When the data on a track is organized by block, this 
usually means that the amount of data transferred in a 
single I/O operation can vary depending on the needs of 
the software designer (not the hardware).

• Blocks can normally be either fixed or variable in length, 
depending on the requirements of the file designer and 
the capabilities of the operating system.



Data Organization: II. Organizing 
Tracks by Block (Cont’d)

• Blocks don’t have the sector-spanning and 
fragmentation problem of sectors since they vary 
in size to fit the logical organization of the data.

• The blocking factor indicates the number of 
records that are to be stored in each block in 
a file.

• Each block is usually accompanied by 
subblocks: key-subblock or count-subblock.



Non-Data Overhead I
• Whether using a block or a sector organization, some 

space on the disk is taken up by non-data overhead. i.e., 
information stored on the disk during pre-formatting.

• On sector-addressable disks, pre-formatting involves 
storing, at the beginning of each sector, sector address, 
track address and condition (usable or defective) + gaps 
and synchronization marks between fields of info to help 
the read/write mechanism distinguish between them.

• On Block-Organized disks, subblock + interblock gaps 
have to be provided with every block. The relative 
amount of non-data space necessary for a block scheme is 
higher than for a sector-scheme.



Non-Data Overhead II

• The greater the block-size, the greater potential 
amount of internal track fragmentation.

• The flexibility introduced by the use of blocks rather 
than sectors can save time since it lets the 
programmer determine, to a large extent, how the 
data is to be organized physically on disk.

• Overhead for the programmer and Operating System.
• Can’t synchronize I/O operation with movement of 

disk.



The Cost of a disk Access

• Seek Time is the time required to move the 
access arm to the correct cylinder.

• Rotational Delay is the time it takes for the 
disk to rotate so the sector we want is under 
the read/write head.

• Transfer Time = (Number of Bytes 
Transferred/ Number of Bytes on a Track) * 
Rotation Time



Disk as Bottleneck I

• Processes are often Disk-Bound, i.e.,  the network 
and the CPU often have to wait inordinate lengths 
of time for the disk to transmit data.

• Solution 1: Multiprogramming (CPU works on 
other jobs while waiting for the disk)

• Solution 2: Stripping: splitting the parts of a file 
on several different drives, then letting the 
separate drives deliver parts of the file to the 
network simultaneously ==> Parallelism



Disk as Bottleneck II

• Solution 3: RAID: Redundant Array of 
Independent Disks

• Solution 4: RAM disk ==> Simulate the behavior 
of the mechanical disk in memory.

• Solution 5: Disk Cache= large block of memory 
configured to contain pages of data from a disk. 
Check cache first. If not there, go to the disk and 
replace some page already in cache with page 
from disk containing the data.



Data and File Structures

Secondary Storage and System 
Software: Magnetic Disks 

&Tapes



Part II: Tape 
Outline• Description of Tape Systems

• Organization of Data on Nine-Track 
Tapes

• Estimating Tape Length Requirements
• Estimating Data Transmission Times
• Disk versus Tape



Description of Tape Systems

• No direct accessing facility, but very rapid 
sequential access.

• Compactness, resistance to rough 
environmental conditions, easy to store and 
transport, cheaper than disk

• Used to be used for application data
• Currently, tapes are primarily used as 

archival storage.



Organization of Data on Nine-
Track Tapes I

• On a tape, the logical position of a byte within a file 
corresponds directly to its physical position relative to 
the start of the file.

• The surface of a typical tape can be seen as a set of 
parallel tracks each of which is a sequence of bits. These 
bits correspond to 1 byte + a parity bit.

• One Byte = a one-bit-wide slice of tape called a frame.



Organization of Data on Nine-
Track Tapes II

• In odd parity, the bit is set to make the 
number of bits in the frame odd. This is 
done to check the validity of the data.

• Frames are organized into data blocks of 
variable size separated by interblock gaps
(long enough to permit stopping and 
starting)



Estimating Tape Length 
Requirements I

• Let b= the physical length of a data block
• Let g= the length of an interblock gap, and
• Let n= the number of data blocks.
• The space requirement, s, for storing the 

file is s = n * (b+g)
• b= blocksize (i.e., bytes per block)/ tape 

density (i.e., bytes per inch)



Estimating Tape Length 
Requirements II

• The number of records stored in a physical block 
is called the blocking factor.

• Effective Record Density: a general measure of 
the effect of choosing different block sizes: 
(number of bytes per block)/ (number of inches 
required to store a block)

• ==> Space utilization is sensitive to the relative 
sizes of data blocks and interblock gaps.



Estimating Data Transmission 
Times

• Normal Data Transmission Rate= (Tape 
Density (bpi)) * (Tape Speed (ips))

• Interblock gaps, however, must be taken 
into consideration ==> Effective 
Transmission Rate/ ((Effective Recording 
Density)* (Tape Speed))



Disk  versus Tape
• In the past: Both Disks and Tapes were used for 

secondary storage. Disks were preferred for 
random access and tape was better for sequential 
access.

• Now (1): Disks have taken over much of 
secondary storage ==> Because of the decreased 
cost of disk + memory storage

• Now (2): Tapes are used as Tertiary storage 
(Cheap, fast & easy to stream large files or sets of 
files between tape and disk)



Data and File

Secondary Storage and System 
Software: CD-ROM & Issues in 

Data Management 



Overview
• CD-ROM (Compact Disk, Read-Only 

Memory)
• A Journey of a Byte
• Buffer Management
• I/O in Unix



Introduction to CD-ROM
• A single disc can hold more than 600 megabytes 

of data (~ 400 books of the textbook’s size)
• CD-ROM is read only. i.e., it is a publishing 

medium rather than a data storage and retrieval 
like magnetic disks.

• CD-ROM Strengths: High storage capacity, 
inexpensive price, durability.

• CD-ROM Weaknesses: extremely slow seek 
performance (between 1/2 a second to a second) 
==> Intelligent File Structures are critical. 



Physical Organization of CD-
ROM I

• CD-ROM is a descendent of CD Audios. i.e., listening 
to music is sequential and does not require fast random 
access to data.

• Reading Pits and Lands: CD-ROMs are stamped from 
a glass master disk which has a coating that is changed 
by the laser beam. When the coating is developed, the 
areas hit by the laser beam turn into pits along the track 
followed by the beam. The smooth unchanged areas 
between the pits are called lands.



Physical Organization of CD-
ROM II

• When we read the stamped copy of the disc, we 
focus a beam of laser light on the track as it moves 
under the optical pickup. The pits scatter the light, 
but the lands reflect most of it back to the pickup. 
This alternating pattern of high- and low-intensity 
reflected light is the signal used to reconstruct the 
original digital information.

• 1’s are represented by the transition from pit to 
land and back again. 0’s are represented by the 
amount of time between transitions. The longer 
between transitions, the more 0s we have.



Physical Organization of CD-
ROM III

• Given this scheme, it is not possible to have 2 adjacent 
1s: 1s are always separated by 0s. As a matter of fact, 
because of physical limitations, there must be at least two 
0s between any pair of 1s.

• Raw patterns of 1s and 0s have to be translated to get the 
8-bit patterns of 1s and 0s that form the bytes of the 
original data.

• EFM encofing (Eight to Fourteen Modulations) turns the 
original 8 bits of data into 14 expanded bits that can be 
represented in the pits and lands on the disk.

• Since 0s are represented by the length of time between 
transition, the disk must be rotated at a precise and 
constant speed. This affects the CD-ROM drive’s ability       
.                         to seek quickly.



CLV instead of CAV I
• Data on a CD-ROM is stored in a single, spiral 

track. This allows the data to be packed as tightly 
as possible since all the sectors have the same size 
(whether in the center or at the edge).

• In the “regular arrangement”, the data is packed 
more densely in the center than in the edge ==> 
Space is lost in the edge.

• Since reading the data requires that it passes under 
the optical pick-up device at a constant rate, the 
disc has to spin more slowly when reading the 
outer edges than when reading towards the center.



CLV instead of CAV II
• The CLV format is responsible, in large part, for the 

poor seeking performance of CD-ROM Drives: there 
is no straightforward way to jump to a location. Part 
of the problem is the need to change rotational speed.

• To read the address info that is stored on the disc 
along with the user’s data, we need to be moving the 
data under the optical pick up at the correct speed. 
But to know how to adjust the speed, we need to be 
able to read the address info so we know where we 
are. How do we break this loop? By guessing and 
through trial and error ==> Slows down performance.



Addressing

• Different from the “regular” disk method.
• Each second of playing time on a CD is divided into 75 

sectors. Each sector holds 2 Kilobytes of data. Each CD-
ROM contains at least one hour of playing time.

• ==> The disc is capable of holding at least 60 min * 60 
sec/min * 75 sector/sec * 2 Kilobytes/sector = 540, 000 
KBytes

• Often, it is actually possible to store over 600, 000 KBytes.
• Sectors are addressed by min:sec:sector e.g., 16:22:34



CD-ROM Strengths & 
Weaknesses

• Seek Performance: very bad
• Data Transfer Rate: Not Terrible/Not Great
• Storage Capacity: Great

– Benefit: enables us to build indexes and other support 
structures that can help overcome some of the limitations 
associated with CD-ROM’s poor performance.

• Read-Only Access: There can’t be any changes ==> File 
organization can be optimized.

• No need for interaction with the user (which requires a 
quick response)



A Journey of A Byte:What happens when 
the program statement: write(textfile, ch, 1) 

is executed ?
Part that takes place in memory: 
• Statement calls the Operating System (OS) which overseas the 

operation
• File manager (Part of the OS that deals with I/O)

– Checks whether the operation is permitted
– Locates the physical location where the byte will be stored 

(Drive, Cylinder, Track & Sector)
– Finds out whether the sector to locate the ‘P’ is already in 

memory (if not, call the I/O Buffer)
– Puts ‘P’ in the I/O Buffer
– Keep the sector in memory to see if more bytes will be going 

to the same sector in the file



A Journey of A Byte:What happens when the 
program statement: write(textfile, ch, 1) is 

executed (Cont’d) ?
Part that takes place outside of memory: 
• I/O Processor: Wait for an external data path to 

become available (CPU is faster than data-paths 
==> Delays)

• Disk Controller:
– I/O Processor asks the disk controller if the 

disk drive is available for writing 
– Disk Controller instructs the disk drive to move 

its read/write head to the right track and sector.
– Disk spins to right location and byte is written



Buffer Management

• What happens to data travelling between a 
program’s data area and secondary storage?

• The use of Buffers: Buffering involves 
working with a large chunk of data in 
memory so the number of accesses to 
secondary storage can be reduced.



Buffer Bottlenecks
• Assume that the system has a single buffer and is 

performing both input and output on one character at a 
time, alternatively.

• In this case, the sector containing the character to be read 
is constantly over-written by the sector containing the spot 
where the character will be written, and vice-versa.

• In such a case, the system needs more than 1 buffer: at 
least, one for input and the other one for output. 

• Moving data to or from disk is very slow and programs 
may become I/O Bound ==> Find better strategies to 
avoid this problem.



Buffering Strategies

• Multiple Buffering
– Double Buffering
– Buffer Pooling

• Move Mode and Locate Mode
• Scatter/Gather I/O



Data and File Structures

Fundamental File Structure 
Concepts & Managing Files of 

Records



Outline I: Fundamental File 
Structure Concepts• Stream Files

• Field Structures
• Reading a Stream of Fields
• Record Structures
• Record Structures that use a length 

indicator



Outline II: Managing Files of 
Records

• Record Access
• More About Record Structures
• File Access and File Organization
• More Complex File Organization and 

Access
• Portability and Standardization



Field and Record Organization: 
Overview

• The basic logical unit of data is the field which 
contains a single data value.

• Fields are organized into aggregates, either as 
many copies of a single field (an array) or as a list 
of different fields (a record).

• When a record is stored in memory, we refer to it 
as an object and refer to its fields as members.

• In this lecture, we will investigate the many ways 
that objects can be represented as records in files.



Stream Files

• Mary Ames
• 123 Maple
• Stillwater, OK 74075

• Alan Mason
• 90 Eastgate
• Ada, OK 74820

• In Stream Files, the information is written as a
stream of bytes containing no added information:
AmesMary123 MapleStillwaterOK74075MasonAlan90 EastgateAdaOK74820
• Problem: There is no way to get the information
back in the organized record format.



Field Structures

• There are many ways of adding structure to 
files to maintain the identity of fields:
– Force the field into a predictable length
– Begin each field with a length indicator
– Use a “keyword = value” expression to 

identify each field and its content.



Reading a Stream of Fields

• A Program can easily read 
a stream of fields and 
output ===>

• This time, we do preserve 
the notion of fields, but 
something is missing: 
Rather than a stream of 
fields, these should be two 
records

Last Name: ‘Ames’
First Name: ‘Mary’
Address: ‘123 Maple’
City: ‘Stillwater
State: ‘OK’
Zip Code: ‘74075’
Last Name: ‘Mason’
First Name: ‘Alan’
Address: ‘90 Eastgate’
City: ‘Ada’
State: ‘OK’
Zip Code: ‘74820’



Record Structure I

• A record can be defined as a set of fields 
that belong together when the file is viewed 
in terms of a higher level of organization.

• Like the notion of a field, a record is 
another conceptual tool which needs not 
exist in the file in any physical sense.

• Yet, they are an important logical notion 
included in the file’s structure.



Record Structures II
• Methods for organizing the records of a file include:

– Requiring that the records be a predictable number of bytes 
in length.

– Requiring that the records be a predictable number of fields 
in length.

– Beginning each record with a length indicator consisting of 
a count of the number of bytes that the record contains.

– Using a second file to keep track of the beginning byte 
address for each record.

– Placing a delimiter at the end of each record to separate it 
from the next record.



Record Structures that Use a 
Length Indicator

• The notion of records that we implemented are 
lacking something: none of the variability in the 
length of records that was inherent in the initial 
stream file was conserved.

• Implementation:
– Writing the variable-length records to the file
– Representing the record length
– Reading the variable-length record from the 

file.



Record Access: Keys
• When looking for an individual record, it is 

convenient to identify the record with a key based 
on the record’s content (e.g., the Ames record).

• Keys should uniquely define a record and be 
unchanging.

• Records can also be searched based on a 
secondary key. Those do not typically uniquely 
identify a record.



Sequential Search

• Evaluating Performance of Sequential 
Search.

• Improving Sequential Search Performance 
with Record Blocking.

• When is Sequential Search Useful?



Direct Access

• How do we know where the beginning of the 
required record is? 
ÜIt may be in an Index (discussed in a different 

lecture)
ÜWe know the relative record number (RRN)
• RRN are not useful when working with variable 

length-records: the access is still sequential.
• With fixed-length records, however, they are 

useful.



Record Structure

• Choosing a Record Structure and Record Length 
within a fixed-length record. 2 approaches:
– Fixed-Length Fields in record (simple but 

problematic).
– Varying Field boundaries within the fixed-

length record.
• Header Records are often used at the beginning of 

the file to hold some general info about a file to 
assist in future use of the file. 



File Access and File 
Organization: A Summary

• File organization depends on what use you want to 
make of the file.

• Since using a file implies accessing it, file access 
and file organization are intimately linked.

• Example: though using fixed-length records 
makes direct access easier, if the documents have 
very variable lengths, fixed-length records is not a 
good solution: the application determines our 
choice of both access and organization. 



Beyond Record Structure

• Abstract Data Models for File Access
• Headers and Self-Describing File
• Metadata
• Color Raster Images
• Mixing Object Types in One File
• Representation-Independent File Access
• Extensibility



Portability and Standardization
• Factors Affecting Portability

– Differences among Operating Systems
– Differences among Languages
– Differences in Machine Architectures

• Achieving Portability
– Agree on a Standard Physical Record Format and Stay with it
– Agree on a Standard Binary Encoding for Data Elements
– Number and Text Conversion
– File Structure Conversion
– File System Differences
– Unix and Portability



Data and File

Organizing Files for Performance



Overview
• In this lecture, we continue to focus on 

file organization, but with a different 
motivation.

• This time we look at ways to organize or 
re-organize files in order to improve 
performance.



Outline
• We will be looking at four different issues:

– Data Compression: how to make files 
smaller

– Reclaiming space in files that have 
undergone deletions and updates

– Sorting Files in order to support binary 
searching ==> Internal Sorting

– A better Sorting Method: KeySorting



Data Compression I:                  
An Overview

• Question: Why do we want to make files 
smaller?

• Answer:
– To use less storage, i.e., saving costs
– To transmit these files faster, decreasing access 

time or using the same access time, but with a 
lower and cheaper bandwidth

– To process the file sequentially faster. 



Data Compression II: Using a Different 
Notation => Redundancy Compression

• In the previous lectures, when referring to the state 
field, we used 2 ASCII bytes=16 bits. Was that 
really necessary?

• Answer: Since there are only 50 states, we could 
encode them all with only 6 bits, thus saving 1 
byte per state field.

• Disadvantages:
– Not Human-Readable
– Cost of Encoding/Decoding Time
– Increased Software Complexity 

(Encoding/Decoding Module)



Data Compression II: Suppressing Repeating 
Sequences ==> Redundancy Compression

• When the data is represented in a Sparse array, we can use a type 
of compression called: run-length encoding.

• Procedure:
– Read through the array in sequence except where the same 

value occurs more than once in succession.
– When the same value occurs more than once, substitute the 

following 3 bytes in order:
• The special run-length code indicator
• The values that is repeated; and
• The number of times that the value is repeated.

• No guarantee that space will be saved!!!



Data Compression III: Assigning 
Variable-Length Code

• Principle: Assign short codes to the most frequent 
occurring values and long ones to the least 
frequent ones.

• The code-size cannot be fully optimized as one 
wants codes to occur in succession, without 
delimiters between them, and still be recognized.

• This is the principle used in the Morse Code
• As well, it is used in Huffman Coding. ==> Used 

for compression in Unix (see slide 9).



Data Compression IV: Irreversible 
Compression Techniques

• Irreversible Compression is based on the assumption 
that some information can be sacrificed. [Irreversible 
compression is also called Entropy Reduction].

• Example: Shrinking a raster image from 400-by-400 
pixels to 100-by-100 pixels. The new image contains 1 
pixel for every 16 pixels in the original image.

• There is usually no way to determine what the original 
pixels were from the one new pixel.

• In data files, irreversible compression is seldom used. 
However, it is used in image and speech processing.



Data Compression V: Compression in Unix I: 
Huffman Coding (pack and unpack)

• Suppose messages are made of letters a, b, c, d, 
and e, which appear with probabilities .12, .4, .15, 
.08, and .25, respectively.

• We wish to encode each character into a sequence 
of 0’s and 1’s so that no code for a character is the 
prefix for another.

• Answer (using Huffman’s algorithm given on the 
next slide): a=1111, b=0, c=110, d=1110, e=10.



Constructing Huffman Codes 
(A FOREST is a collection of TREES; each TREE has a root

and a weight)

While there is more than one TREE in the FOREST {
• i= index of the TREE in FOREST with smallest weight;
• j= index of the TREE in FOREST with 2nd smallest weight;
• Create a new node with left child FOREST(i)--> root and 

right child FOREST(j)--> root
• Replace TREE i in FOREST by a tree whose root is the new 

node and whose weight is FOREST(i)--> weight + 
FOREST(j)--> weight

• Delete TREE j from FOREST   }



Data Compression VI: Compression in Unix II: 
Lempel-Ziv (compress and uncompress)

• Principle: Compression of an arbitrary sequence of bits can 
be achieved by always coding a series of 0’s and 1’s as 
some previous such string (the prefix string) plus one new 
bit. Then the new string formed by adding the new bit to the 
previously used prefix string becomes a potential prefix 
string for future strings.

• Example: Encode 101011011010101011
• Answer: 00010000001000110101011110101101 (see 

procedure given on slide 12)
• If the initial string is short, the encoding may be longer as 

above, however, for long documents this encoding is close 
to optimal.



Constructing Lempel-Ziv Codes

• Step 1: Parse the input string into comma 
separated phrases that represent strings that can be 
represented by a previous string as a prefix + 1 bit.

• Step 2: Encode the different phrases (except the 
last one) using a minimal binary representation. 
Start with the null phrase.

• Step 3: Write the string, listing 1) the code for the 
prefix phrase + the new bit needed to create the 
new phrase.



Reclaiming Space in Files I: Record 
Deletion and Storage Compaction

• Recognizing Deleted Records
• Reusing the space from the record ==> Storage 

Compaction.
• Storage Compaction: After deleted records have 

accumulated for some time, a special program is 
used to reconstruct the file with all the deleted 
approaches.

• Storage Compaction can be used with both fixed-
and variable-length records. 



Reclaiming Space in Files II: Deleting Fixed-
Length Records for Reclaiming Space 

Dynamically
• In some applications, it is necessary to reclaim space 

immediately. 
• To do so, we can:

– Mark deleted records in some special ways
– Find the space that deleted records once occupied so that we 

can reuse that space when we add records.
– Come up with a way to know immediately if there are empty 

slots in the file and jump directly to them.
• Solution: Use an avail linked list in the form of a stack. 

Relative Record Numbers (RRNs) play the role of 
pointers.



Reclaiming Space in Files III: Deleting 
Variable-Length Records for 

Reclaiming Space Dynamically
• Same ideas as for Fixed-Length Records, but a 

different implementation must be used.
• In particular, we must keep a byte count of each 

record and the links to the next records on the 
avail list cannot be the RRNs.

• As well, the data structure used for the avail list 
cannot be a stack since we have to make sure that 
when re-using a record it is of the right size.



Reclaiming Space in Files IV: 
Storage Fragmentation

• Wasted Space within a record is called internal 
Fragmentation.

• Variable-Length records do not suffer from 
internal fragmentation. However, external 
fragmentation is not avoided.

• 3 ways to deal with external fragmentation: 
– Storage Compaction
– Coalescing the holes
– Use a clever placement strategy



Reclaiming Space in Files V: 
Placement Strategies I

• First Fit Strategy: accept the first available 
record slot that can accommodate the new 
record.  

• Best Fit Strategy: choose the first available 
smallest available record slot that can 
accommodate the new record.

• Worst Fit Strategy: choose the largest 
available record slot.



Reclaiming Space in Files V: 
Placement Strategies II

• Some general remarks about placement strategies:
– Placement strategies only apply to variable-length records
– If space is lost due to internal fragmentation, the choice is first 

fit and best fit. A worst fit strategy truly makes internal 
fragmentation worse.

– If the space is lost due to external fragmentation, one should 
give careful consideration to a worst-fit strategy.



Finding Things Quickly I: 
Overview I

• The cost of Seeking is very high.
• This cost has to be taken into consideration when 

determining a strategy for searching a file for a 
particular piece of information.

• The same question also arises with respect to sorting, 
which often is the first step to searching efficiently.

• Rather than simply trying to sort and search, we 
concentrate on doing so in a way that minimizes the 
number of seeks.



Finding things Quickly II: 
Overview II

• So far, the only way we have to retrieve or find 
records quickly is by using their RRN (in case the 
record is of fixed-length).

• Without a RRN or in the case of variable-length 
records, the only way, so far, to look for a record 
is by doing a sequential search. This is a very 
inefficient method.

• We are interested in more efficient ways to 
retrieve records based on their key-value.



Finding things Quickly III: 
Binary Search

• Let’s assume that the file is sorted and that 
we are looking for record whose key is 
Kelly in a file of 1000 fixed-length records.

1     2 … . 500 1000

1: Johnson

750

2: Monroe

Next Comparison



Finding things Quickly IV: Binary 
Search versus Sequential Search

• Binary Search of a file with n records takes 
O(log2n) comparisons.

• Sequential search takes O(n) comparisons.
• When sequential search is used, doubling the 

number of records in the file doubles the number 
of comparisons required for sequential search.

• When binary search is used, doubling the number 
of records in the file only adds one more guess to 
our worst case.

• In order to use binary search, though, the file first 
has to be sorted. This can be very expensive. 



Finding things Quickly V: 
Sorting a Disk File in Memory

• If the entire content of a file can be held in 
memory, then we can perform an internal 
sort. Sorting in memory is very efficient.

• However, if the file does not hold entirely in 
memory, any sorting algorithm will require a 
large number of seeks. Sorting would, thus, 
be extremely slow. Unfortunately, this is 
often the case, and solutions have to be found.



Finding things Quickly VI: The limitations 
of Binary Search and Internal Sorting

• Binary Search requires more than one or two accesses. 
Accessing a record using the RRN can be done with a 
single access ==> We would like to achieve RRN retrieval 
performance while keeping the advantage of key access. 

• Keeping a file sorted is very expensive: in addition to 
searching for the right location for the insert, once this 
location is founds, we have to shift records to open up the 
space for insertion.

• Internal Sorting only works on small files. ==> Keysorting



Finding things Quickly VII: 
KeySorting

• Overview: when sorting a file in memory, the only 
thing that really needs sorting are record keys.

• Keysort algorithms work like internal sort, but with 2 
important differences:
– Rather than read an entire record into a memory 

array, we simply read each record into a temporary 
buffer, extract the key and then discard.

– If we want to write the records in sorted order, we 
have to read them a second time. 



Finding things Quickly VIII: 
Limitation of the KeySort Method

• Writing the records in sorted order requires 
as many random seeks as there are records.

• Since writing is interspersed with reading, 
writing also requires as many seeks as there 
are records.

• Solution: Why bother to write the file of 
records in key order: simply write back the 
sorted index.



Finding things Quickly IX:       
Pinned Records

• Indexes are also useful with regard to deleted records.
• The avail list indicating the location of unused 

records consists of pinned records in the sense that 
these unused records cannot be moved since moving 
them would create dangling pointers.

• Pinned records make sorting very difficult. One 
solution is to use an ordered index and not to move 
the records.



Data and File Structures

Indexing



Overview
• An index is a table containing a list of keys associated with 

a reference field pointing to the record where the 
information referenced by the key can be found.

• An index lets you impose order on a file without 
rearranging the file.

• A simple index  is simply an array of (key, reference) pairs.
• You can have different indexes for the same data: multiple 

access paths.
• Indexing give us keyed access to variable-length record 

files.



A Simple Index for Entry-
Sequenced Files I

• Suppose that you are looking at a collection of 
recordings with the following information about 
each of them:
– Identification Number
– Title
– Composer or Composers
– Artist or Artists
– Label (publisher)



A Simple Index for Entry-
Sequenced Files II

• We choose to organize the file as a series of 
variable-length record with a size field preceding 
each record. The fields within each record are also 
of variable-length but are separated by delimiters.

• We form a primary key by concatenating the 
record company label code and the record’s ID 
number. This should form a unique identifier.



A Simple Index for Entry-
Sequenced Files III

• In order to provide rapid keyed access, we build a 
simple index with a key field associated with a 
reference field which provides the address of the 
first byte of the corresponding data record. 

• The index may be sorted while the file does not 
have to be. This means that the data file may be 
entry sequenced: the record occur in the order 
they are entered in the file.



A Simple Index for Entry-
Sequenced Files IV

A few comments about our Index Organization:
– The index is easier to use than the data file because 1) it uses

fixed-length records and 2) it is likely to be much smaller 
than the data file.

– By requiring fixed-length records in the index file, we 
impose a limit on the size of the primary key field. This could 
cause problems.

– The index could carry more information than the key and 
reference fields. (e.g., we could keep the length of each data 
file record in the index as well).



Basic Operations on an Indexed 
Entry-Sequenced File

• Assumption: the index is small enough to be held in 
memory. Later on, we will see what can be done 
when this is not the case.
– Create the original empty index and data files
– Load the index into memory before using it.
– Rewrite the index file from memory after using it.
– Add records to the data file and index.
– Delete records from the data file.
– Update records in the data file.



Creating, Loading and Re-writing
• The index is represented as an array of records. The 

loading into memory can be done sequentially, 
reading a large number of index records (which are 
short) at once.

• What happens if the index changed but its re-writing 
does not take place or takes place incompletely?
– Use a mechanism for indicating whether or not the 

index is out of date.
– Have a procedure that reconstructs the index from 

the data file in case it is out of date. 



Record Addition
• When we add a record, both the data file and the index 

should be updated.
• In the data file, the record can be added anywhere. 

However, the byte-offset of the new record should be 
saved.

• Since the index is sorted, the location of the new record 
does matter: we have to shift all the records that belong 
after the one we are inserting to open up space for the 
new record. However, this operation is not too costly as 
it is performed in memory.



Record Deletion

• Record deletion can be done using the 
methods discussed last week (and in 
Chapter 6).

• In addition, however, the index record 
corresponding to the data record being 
deleted must also be deleted. Once again, 
since this deletion takes place in memory, 
the record shifting is not too costly.



Record Updating
• Record updating falls into two categories:

– The update changes the value of the key field.
– The update does not affect the key field.

• In the first case, both the index and data file may need to be 
reordered. The update is easiest to deal with if it is 
conceptualized as a delete followed by an insert (but the 
user needs not know about this).

• In the second case, the index does not need reordering, but 
the data file may. If the updated record is smaller than the 
original one, it can be re-written at the same location. If, 
however, it is larger, then a new spot has to be found for it. 
Again the delete/insert solution can be used.



Indexes that are too large to hold 
in memory I

• Problems:
– Binary searching requires several seeks rather 

than being performed at memory speed.
– Index rearrangement requires shifting or sorting 

records on secondary storage ==> Extremely 
time consumming.

• Solutions:
– Use a hashed organization
– Use a tree-structured index (e.g., a B-Tree) 



Indexes that are too large to hold 
in memory II

• Nonetheless, simple indexes should not be 
completely discarded:
– They allow the use of a binary search in a variable-

length record file.
– If the index entries are significantly smaller than the 

data file records, sorting and file maintenance is faster.
– If there are pinned records in the data file, 

rearrangements of the keys are possible without moving 
the data records. 

– They can provide access by multiple keys.



Indexing to provide access by 
multiple keys

• So far, our index only allows key access. i.e., you can 
retrieve record DG188807, but you cannot retrieve a 
recording of Beethoven’s Symphony no. 9. ==> Not that 
useful!

• We need to use secondary key fields consisting of album 
titles, composers, and artists. 

• Although it would be possible to relate a secondary key to 
an actual byte offset, this is usually not done (see why later).
Instead, we relate the secondary key to a primary key which 
then will point to the actual byte offset.  



Record Addition in multiple key 
access settings

• When a secondary index is used, adding a record involves 
updating the data file, the primary index and the secondary 
index. The secondary index update is similar to the primary 
index update.

• Secondary keys are entered in canonical form (all capitals). 
The upper- and lower- case form must be obtained from the 
data file. As well, because of the length restriction on keys, 
secondary keys may sometimes be truncated.

• The secondary index may contain duplicate (the primary 
index couldn’t).



Record Deletion in multiple key 
access settings

• Removing a record from the data file means removing its 
corresponding entry in the primary index and may mean 
removing all of the entries in the secondary indexes that 
refer to this primary index entry.

• However, it is also possible not to worry about the 
secondary index (since, as we mentioned before, secondary 
keys were made to point at primary ones). ==> savings 
associated with the lack of rearrangement of the secondary 
index. 

• Cost associated with not purging the secondary index.



Record Updating in multiple key 
access settings 

• Three possible situations:
– Update changes the secondary key: may have to 

rearrange secondary index.
– Update changes the primary key: changes to the 

primary index are required, but very few are 
needed for the secondary index.

– Update confined to other fields: no changes 
necessary to primary nor secondary index.



Retrieval using combinations of 
secondary keys

• With secondary keys, we can now search for things like 
all the recordings of “Beethoven’s work” or all the 
recordings titled “Violin Concerto”.

• More importantly, we can use combinations of 
secondary keys. (e.g., find all recordings of
Beethoven’s Symphony no. 9).

• Without the use of secondary indexes, this request 
requires a very expensive sequential search through the 
entire file. Using secondary indexes, responding to this 
query is simple and quick.



Improving the secondary index 
structure I: The problem

• Secondary indexes lead to two difficulties:
• The index file has to be rearranged every time a 

new record is added to the file.
• If there are duplicate secondary keys, the 

secondary key field is repeated for each entry ==> 
Space is wasted.



Improving the secondary index 
structure II: Solution 1

• Solution 1: Change the secondary index structure so it 
associates an array of reference with each secondary key. 

• Advantage: helps avoid the need to rearrange the secondary 
index file too often.

• Disadvantages:
– It may restrict the number of references that can be 

associated with each secondary key.
– It may cause internal fragmentation, i.e., waste of space. 



Improving the secondary index 
structure III: Solution 2

• Method: each secondary key points to a different list of primary key 
references. Each of these lists could grow to be as long as it needs to 
be and no space would be lost to internal fragmentation.

Advantages:
– The secondary index file needs to be rearranged only upon record

addition.
– The rearranging is faster.
– It is not that costly to keep the secondary index on disk.
– The primary index never needs to be sorted.
– Space from deleted primary index records can easily be reused.

Disadvantage:
– Locality (in the secondary index) has been lost ==> More .      

seeking may be necessary.



Selective Indexes
• Using secondary keys, you can divide the file into 

parts and provide a selective view.
• For example, you can build a selective index that 

contains only titles to classical recordings or 
recordings released prior to 1970, and since 1970.

• A possible query could then be: “List all the 
recordings of Beethoven’s Simphony no. 9 
released since 1970.



Binding I
• Question: At what point is the key bound to the physical 

address of its associated record?
• Answer so far: the binding of our primary keys takes place 

at construction time. The binding of our secondary keys 
takes place at the time they are used.

• Advantage of construction time binding:
– Faster access

• Disadvantage of construction time binding:
– Reorganization of the data file must result in 

modifications to all bound index files.
• Advantage of retrieval time binding:

– Safer



Binding II

• Tradeoff in binding decisions:
– Tight, construction time binding is preferable when:

• The data file is static or nearly static, requiring 
little or no adding, deleting or updating.

• Rapid performance during actual retrieval is a high 
priority.

– Postponing binding as long as possible is simpler and 
safer when the data file requires a lot of adding, 
deleting and updating.



Data and File Structures

Cosequential Processing and the 
Sorting of Large Files



Definition

• Cosequential operations involve the coordinated 
processing of two or more sequential lists to produce 
a single output list.

• This is useful for merging (or taking the union) of 
the items on the two lists and for matching (or 
taking the intersection) of the two lists.

• These kinds of operations are extremely useful in 
file processing.



Overview 
• Part 1:

– Development of a general model for doing co-sequential 
operations. 

– Illustration of this model’s use for simple matching and 
merging operations.

– Application of this model to a more complex general 
ledger program

• Part 2:
– Multi-Way Merging
– External Sort-Merge



A Model for Implementing 
Cosequential Processes: Matching I

• Adams
• Carter
• Chin
• Davis
• Foster
• Garwick
• James
• Johnson
• Karns
• Lambert
• Miller   

• Adams
• Anderson
• Andrews
• Bech
• Burns
• Carter
• Davis
• Dempsey
• Gray
• James
• Johnson
• Katz
• Peters     

Matching Names in Two Lists



A Model for Implementing
Cosequential Processes: Matching  II

 Matching names in two lists: Matters to Consider:

• Initializing: we need to arrange things so that the     procedure gets 
going properly.

• Getting and accessing the next list item: we need         simple methods 
to do so.

• Synchronizing: we have to make sure that the current item from 
one list is never so far ahead of the current item on the other that a 
match will be missed. 

• Handling end-of-file conditions
• Recognizing Errors
• Matching the names efficiently -->Good synchronization



A Model for Implementing
Cosequential Processes: Matching  III

Synchronization
• Let Item(1) be the current item from list 1 and 

Item(2) be the current item from list 2.
• Rules:

– If Item(1) < Item(2), get the next item from list 1.
– If Item(1) > Item(2), get the next item from list 2.
– If Item(1) = Item(2), output the item and get the 

next items from the two lists.



A Model for Implementing
Cosequential Processes: Merging  I
• The matching procedure can easily be 

modified to handle merging of two lists.
• An important difference between matching 

and merging is that with merging, we must 
read completely through each of the lists.

• We have to recognize, however, when one 
of the two lists has been completely read 
and avoid reading again from it.



Application of the Cosequential Model 
to a General Ledger Program I 

• The problem: To design a general ledger posting program as 
part of an accounting system.

• The system contains:
– A journal file: with the monthly transactions that are 

ultimately to be posted to the ledger file.
– A ledger file containing month-by-month summaries of the 

values associated with each of the bookkeeping accounts.
• Posting involves associating each transaction with its account in 

the ledger.



Application of the Cosequential Model 
to a General Ledger Program II

• How is the posting process implemented?
• Solution 1: Build an index for the ledger organized 

by account number. ==> 2 problems: 1) lots of 
seeking back and forth; 2) the journal entries relating 
to one account are not collected together.

• Solution 2: collect all the journal transactions that 
relate to a given account by sorting the journal 
transactions by account number and working through 
the ledger and the sorted journal cosequentially. 



Application of the Cosequential Model 
to a General Ledger Program III

• Goal of our program: To produce a printed version    
of the ledger that not only shows the beginning and 
current balance for each account but also lists all the 
journal transactions for the month.

• From the point of view of the ledger accounts, the 
posting process is a merge (even unmatched ledger 
accounts appear in the output). From the point of view 
of the journal accounts, the posting process is a match.

• Our program must implement a combined merge/match 
while simultaneously printing account title lines, 
individual transactions and summary balances.



Application of the Cosequential Model 
to a General Ledger Program IV

• Summary of the steps involved in processing the ledger 
entries:
– Immediately after reading a new ledger object, print 

the header line and initialize the balance for the next 
month from the previous month’s balance.

– For each transaction object that matches, update the 
account balance.

– After the last transaction for the account, print the 
balance line.



Application of the Cosequential Model 
to a General Ledger Program V

The posting process has three cases:
• If the ledger account number is less then the journal 

transaction account number, then print the ledger account 
balance and then read in the next ledger account and print 
its title line if the account exists.

• If the account numbers match, then add the transaction 
amount to the account balance, print the description of the 
transaction, and read the next journal entry.

• If the journal account is less than the ledger account, then it 
is an unmatched journal account. Print an error message and 
continue with the next transaction.



A K-Way Merge Algorithm
Let there be two arrays:
• An array of k lists and
• An array of k index values corresponding to the current 

element in each of the k lists, respectively.
Main loop of the K-Way Merge algorithm:
• Find the index of the minimum current item, minItem
• Process minItem(output it to the output list)
• For i=0 until i=k-1 (in increments of 1)

– If the current item of list i is equal to minItem then 
advance list i.

• Go back to the first step.



A Selection Tree for Merging 
Large Number of Lists

• The K-Way Merging Algorithm just described works 
well if k < 8. Otherwise, the number of comparisons 
needed to find the minimum value each step of the way 
is very large.

• Instead, it is easier to use a selection tree which allows 
us to determine a minimum key value more quickly.

• Merging k lists using this method is related to log2 k 
(the depth of the selection tree) rather than to k.

• Updating selection trees is not easy ==> Keep a tree of 
losers (Knuth, 73).



Keeping Trees of Losers rather 
than Trees of Winners I

• Advantages of the Tree of Losers:
• When using a tree of winners, the records with which the winner 

has to be compared--so as to find the next winner--are located in 
different subtrees. Updating such a tree is not very convenient. 

• When using a tree of losers,
– The value  of each leaf  (apart from the smallest, the winner) 

occurs only once in an internal node)
– All the records with which the winner has to be compared lie on 

a path from the winner leaf to the root.
– As long as each node in the tree has a pointer to its parent, then it 

is very easy to find the next winner.
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Keeping Trees of Losers rather 
than Trees of Winners II

• Algorithm for updating a selection tree of losers:
• T is a pointer to an internal node in the tree of losers
• topoftree is a flag indicating if updating has reached the root

T <-- parent of Buffer[s]
topoftree <-- false
repeat       if key(Buffer(loser(T))) < key(Buffer[s])

then interchange loser(T) and s
if T = root

then topoftree <-- true
else T <-- parent of node pointed to by T

until topoftree



An Efficient Approach to Sorting 
in Memory

• When we previously discussed sorting a file that is small 
enough to fit in memory, we assumed that:
– We would read the entire file from disk into memory.
– We would sort the records using a standard sorting 

procedure, such as shellsort.
– We would write the file back to disk.

• If the file is read and written as efficiently as possible and 
if the best sorting algorithm is used, it seems that we 
cannot improve the efficiency of this procedure.

• Nonetheless, we can improve it by doing things in 
parallel: we can do the reading or writing at the same 
time as the sorting.



Overlapping Processing and I/O: 
Heapsort

• Heapsort can be combined with reading from the disk and writing to 
the disk as follows:
– The heap can be built while reading the file.
– Sorting can be done while writing to the file.

• Heaps show certain similarities with selection trees, but they have a 
somewhat looser structure.

• Heaps have three important properties:
– Each node has a single key and that key is greater than or equal to 

the key at its parent node.
– A Heap is a complete binary tree.
– Storage can be allocated sequentially as an array with left and right 

children of node i located at index 2i and 2i+1 respectively. ==> 
Pointers are unnecessary.



Building the Heap
Insert(NewKey) {
• if (NumElements=MaxElements) return false
• NumElement++
• HeapArray[NumElements]= NewKey
• int k=NumElements; int parent;
• while (k>1)

{ parent=k/2
if (Compare(k, parent) >= 0) break;
else Exchange(k, parent);

k=parent}
• Return true}



Building the Heap while Reading 
the File I

• Rather than seeking every time we want a new record, we 
read blocks of records at a time into a buffer and operate 
on that block before moving to a new block.

• The input buffer for each new block of keys becomes part 
of the memory area set up for the heap. Each time we read 
a new block, we just append it to the end of the heap.

• The first new record is then at the end of the heap array, as 
required by the insert function.

• Once a record is inserted, the next new record is at the end 
of the heap array ready to be inserted as well.



Building the Heap while Reading 
the File II

• Reading block saves on seek time, but it does not allow to 
build the heap while reading input.

• In order to do so, we need to use multiple buffers: as we 
process the keys in one block from the file, we can 
simultaneously read later blocks from the file.

• Question: How many buffers should be used and where 
should we put them?

• Answer: the number of buffers is the number of blocks in 
the file, and they are located in sequence in the array. 

• Note: since building the heap can be faster than reading 
blocks, there may be some delays in processing.



Heap Sorting I

There are three repetitive steps involved in sorting the keys:
• Determine the value of the key in the first position of the heap (i.e., 

the smallest value).
• Move the largest value in the heap (last heap element) into the first 

position, and decrease the number of elements by one. At this 
point, the heap is out of order.

• Reorder the heap by exchanging the largest element with the 
smaller of its children and moving down the tree to the new 
position of the largest element until the heap is back in order.



Heap Sorting II

Remove()
• val=HeapArray[1];
• HeapArray[1]=HeapArray[NumElements];
• NumElements--;
• int k=1; int newK;
• while (2*k <= NumElements){

– if (Compare(2*k, 2*k+1)) < 0) newK=2*k; else 
newK=2*k+1;

– if (Compare(k, newK) <0) break;
– Exchange(k,newK);
– k=newK;}

• return val;}



Heap Sorting while Writing to 
the File

• The smallest record in the heap is known during the first 
step of the sorting algorithm. Therefore, it can be buffered 
until a whole block is known. 

• While that block is written onto the disk a new block can be 
processed and so on.

• Since every time a block can be written to disk, the heap 
size decreases by one block, that block can be used as a 
buffer. i.e., we can have as many output buffers as there are 
blocks in the file.

• Since all the I/O is sequential, this algorithm works as well 
with disks and tapes. As well, a minimum amount of 
seeking is necessary and thus the procedure is efficient. 



An Efficient way of Sorting 
Large Files on Disks: MergeSort

• A solution for this problem was previously presented in the 
form of the Keysort algorithm. However, Keysort has two 
shortcomings:
– Once the key were sorted, it was expensive to seek each 

record in sorted order and then write them to the new, 
sorted file.

– If the file contains many records, even the index is too 
large to fit in memory.

• Solution: (1) Break the file into several sorted subfiles 
(runs), using an internal sorting method; and (2) merge the 
runs. ==> MergeSort



MergeSort: Advantages

• It can be applied to files of any size.
• Reading of the input during the run-creation step is 

sequential ==> Not much seeking.
• Reading through each run during merging and writing the 

sorted record is also sequential. The only seeking necessary 
is as we switch from run to run.

• If heapsort is used for the in-memory part of the merge, its 
operation can be overlapped with I/O

• Since I/O is largely sequential, tapes can be used.



How much Time does a 
MergeSort take?

Simplifying assumptions:
• Only one seek is required for any single sequential access.
• Only one rotational delay is required per access.
Expensive steps (i.e. involving I/O) occurring  in MergeSort
• During the sort phase:

– Reading all records into memory for sorting and forming 
runs.

– Writing sorted runs to disk
• During the merge phase:

– Reading sorted runs into memory for merging.
– Writing sorted file to disk.



What kinds of I/O take place during the 
Sort and the Merge phases?

• Since, during the sort phase, the runs are created using 
heapsort, I/O is sequential. No performance improvement
can ever be gained in this phase.

• During the reading step of the merge phase, there are a lot 
of random accesses (since the buffers containing the 
different runs get loaded and reloaded at unpredictable 
times). The number and size of the memory buffers holding 
the runs determine the number of random accesses. 
Performance improvements can be made in this step.

• The write step of the merge phase, is not influenced by the 
way in which we organize the runs.



The Cost of Increasing the File 
Size

• In general, for a K-way merge of K runs where each run is as 
large as the memory space available, the buffer size for each 
of the runs is: 
(1/K)* size of memory space = (1/K) * size of each run.

• So K seeks are required to read all of the records in each 
individual run and since there are K runs altogether, the 
merge operation requires K2 seeks.

• Since K is directly proportional to N, the number of records, 
SortMerge is an O(N2) operation, measures in terms of seeks.



What can be done to Improve 
MergeSort Performance?

 There are different ways in which MergeSort’s efficiency can 
be improved:
• Allocate more Hardware such as disk drives, memory, and 

I/O channels.
• Perform the merge in more than one step, reducing the 

order of each merge and increasing the buffer size for each 
run.

• Algorithmically increase the lengths of the initial sorted 
runs.

• Find ways to overlap I/O Operations.



Hardware-Based Improvements
• Increasing the amount of memory: helps make the buffers 

larger and thus reduce the numbers of seeks.
• Increasing the Number of Dedicated Disk Drives: If we 

had one separate read/write head for every run, then no time 
would be wasted seeking.

• Increasing the Number of I/O Channels: With a single I/O 
Channel, no two transmission can occur at the same time. 
But if there is a separate I/O Channel for each disk drive, 
then I/O can overlap completely.

• But what if hardware based improvements are not possible?



Decreasing the Number of Seeks 
Using Multiple-Step Merges

• The expensive part of the MergeSort algorithm is related to 
all the seeking performed during the reading step of the 
merge phase. A lot of seeks are involved because of the 
large number of runs that get merged simultaneously.

• In multi-step merging, we do not try to merge all runs at one 
time. Instead, we break the original set of runs into small 
groups and merge the runs in these groups separately. More 
buffer space is available for each run, and, therefore, fewer 
seeks are required per run).

• When all the smaller merges are completed, a second pass 
merges the new set of merged runs.



Increasing Run Lengths Using 
Replacement Selection Replacement Selection Procedure:

• Read a collection of records and sort them using heapsort. The 
resulting heap is called the primary heap.

• Instead of writing the entire primary heap in sorted order, write 
only the record whose key has the lowest value.

• Bring in a new record and compare the values of its key with that 
of the key that has just been output.
– If the new key value is higher, insert the new record into its 

proper place in the primary heap along with the other records 
that are being selected for output.

– If the new record’s key value is lower, place the record in a 
secondary heap of records with key values smaller than those 
already written.

• Repeat Step 3 as long as there are records left in the primary heap 
and there are records to be read. When the primary heap is 
empty, make the secondary heap into the primary heap and 
repeat steps 2 and 3.



Analysis of Run Length Selection

• Question 1: Given P locations in memory, how long a run 
can we expect replacement selection to produce on average?

• Answer 1: On average we can expect a run length of 2P.
• Question 2: What are the costs of using replacement 

selection?
• Answer 2: Replacement Selection requires much more 

seeking in order to form the runs. However, the reduction in 
the number of seeks required to merge the runs usually 
more than offsets that extra cost.



Replacement Selection + 
MultiStep Merging

• In practice, Replacement Selection is not used 
with a one-step merge procedure.

• Instead, it is usually used in a two-step merge 
process.

• The reduction in total seek and rotational delay 
time is most affected by the move from one-step 
to two-step merges, but the use of Replacement 
Selection is also somewhat useful. 



Using Two Disk Drives with 
Replacement Selection

• Replacement Selection offers an opportunity to save on 
both transmission and seek times in ways that memory 
sort methods do not.

• We could use one disk drive to do only input operations 
and the other one to do only output operations.

• This means that:
– Input and Output can overlap ==> Transmission time 

can be decreased by up to 50%.
– Seeking is virtually eliminated.



More Drives? More Processor?

• We can make the I/O process even faster by using more 
than two disk drives.

• If I/O becomes faster than processing, then more 
processors can be used. Different network architectures 
can be used for that:
– Mainframe computers
– Vector and Array processors
– Massively parallel machines
– Very fast local area networks and communication 

software.



Data and File Structures

Multi-Level Indexing and          
B-Trees



Statement of the Problem
• When indexes grow too large they have to be stored 

on secondary storage.
• However, there are two fundamental problems 

associated with keeping an index on secondary 
storage:
– Searching the index must be faster than binary 

searching.
– Insertion and deletion must be as fast as search.



Indexing with Binary Search 
Trees: Negative Aspects

• A sorted list can be expressed in a Binary Search 
Tree representation.

• However, there are 2 problems with binary search 
trees:
– They are not fast enough for disk resident 

indexing.
– There is no effective strategy of balancing the 

tree.
ÙWe will look at 2 solutions: AVL Trees and Paged 

Binary Trees.



Indexing with Binary Search 
Trees: Positive Aspects

• Tree structures give us an important new capability: we 
no longer have to sort the file to perform a binary search.

• To add a new key, we simply link it to the appropriate 
leaf node. 

• If the tree remains balanced, then the search performance 
on this tree is good.

• Problems occur when the tree gets unbalanced.
ÔWe will look for schemes that allow trees to remain 

balanced



AVL Trees I
• AVL Trees allow us to re-organize the nodes of 

the tree as we receive new keys, maintening a near 
optimal tree structures.

• An AVL Tree is a height-balanced tree, i.e., a tree 
that places a limit on the amount of difference 
allowed between the heights of any two sub-trees 
sharing a common root. 

• In an AVL or HB-1 tree, the maximum allowable 
difference is one.



AVL Trees II
• The two features that make AVL trees important are:

– By setting a maximum allowable difference in the 
height of any two sub-trees, AVL trees guarantee 
a minimum level of performance in searching.

– Maintaining a tree in AVL form as new nodes are 
inserted involves the use of one of a set of four 
possible rotations. Each of the rotations is 
confined to a single local area of the tree. The 
most complex of the rotations requires only five 
pointer reassignments.



AVL Tree III

• AVL Trees are not, themselves, directly applicable to 
most file structures because like all strictly binary trees, 
they have too many levels--they are too deep.

• AVL Trees, however, are important because they suggest 
that it is possible to define procedures that maintain 
height-balance.

• AVL Trees’ search performance approximates that of a 
completely balanced tree. For a completely balanced tree, 
the worst-case search to find a key is log2(N+1). For an 
AVL Tree it is 1.44 Log2(N+2).



Paged Binary Trees
• AVL trees tackle the problem of keeping an index in sorted 

order cheaply. They do not address the problem regarding 
the fact that Binary Searching requires too many seeks.

• Paged Binary trees addresses this problem by locating 
multiple binary nodes on the same disk page.

• In a paged system, you do not incur the cost of a disk seek 
just to get a few bytes. Instead, once you have taken the 
time to seek to an area of the disk, you read in an entire 
page from the file.

• When searching a Binary Tree, the number of seeks 
necessary is log2(N+1). It is logk+1(N+1) in the paged 
version. 



Problems with Paged Trees I  

• Inefficient Disk Usage
• How should we build a paged tree? 

– Easy if we know what the keys are and their order before 
starting to build the tree.

– Much more difficult if we receive keys in random order 
and insert them as soon as we receive them. The problem 
is that the wrong keys may be placed at the root of the 
trees and cause an imbalance.



Problems with Paged Trees II
• Three problems arise with paged trees:

– How do we ensure that the keys in the root page 
turn out to be good separator keys, dividing up the 
set of other keys more or less evenly.

– How do we avoid grouping keys that shouldn’t 
share a page?

– How can be guarantee that each of the pages 
contains at least some minimum number of keys?



Multi-Level Indexing: A Better 
Approach to Tree Indexes

• Up to this point, in this lecture, we’ve looked at indexing a 
file based on building a search tree. However, there are 
problems with this approach (see previous slide).

• Instead, we get back to the notion of the simple indexes we 
saw earlier in the course, but we extend this notion to that of 
multi-record indexes and then, multi-level indexes.

• While multi-record multi-level indexes really help reduce 
the number of disk accesses and their overhead space costs 
are minimal, inserting a new key or deleting an old one is 
very costly.  



B-Trees: Addressing the problems of Paged 
Trees and Multi-Level Indexing

• Trees appear to be a good general solution to indexing, but 
each particular solution we’ve looked at so far presents 
some problems.

• Paged Trees suffer from the fact that they are built 
downward from the top and that a “bad” root may 
unbalance the construct.

• Multi-Level Indexing takes a different approach that solves 
many problems but creates costly insertion and deletion. 

• An ideal solution would be one that combines the 
advantages of the previous solutions and does not suffer 
from their disadvantages.

• B-Trees appear to do just that!



B-Trees: An Overview  
• B-Trees are built upward from the bottom rather than 

downward from the top, thus addressing the problems of 
Paged Trees: with B-Trees, we allow the root to emerge 
rather than set it up and then find ways to change it.

• B-Trees are multi-level indexes that solve the problem of 
linear cost of insertion and deletion. 

• B-Trees are now the standard way to represent indexes.



Example of a B-Tree

P W

D M P T W

A B C D

G I M

N P U W

R S T

Note: references to actual record only occur in the leaf nodes.
The interior nodes are only higher level indexes (this is why

there are duplications in the tree)



How do B-Trees work?          
Main Ideas

• Each node of a B-Tree is an Index Record. Each of these 
records has the same maximum number of key-reference 
pairs called the order of the B-Tree. The records also have a 
minimum number of key-reference pairs, typically, half the 
order.

• When inserting a new key into an index record that is not 
full, we simply need to update that record and possibly go 
up the tree recursively.

• When inserting a new key into an index record that is full, 
this record is split into two, each with half of the keys. The 
largest key of the split record is promoted which may cause 
a new recursive split.



Searching a B-Tree

P W

D M P T W

A B C D

G I M

N P U W

R S T

• Problem 1: Look for L
• Problem 2: Look for S



Insertion into a B-Tree:     
General Strategy

• Search all the way down to the leaf level in 
order to find the insertion location.

• Insertion, overflow detection, and splitting 
on the upward path.

• Creation of a new root node if the current 
root was split.



Insertion into a B-Tree:            
No Split & Contained Splits

C D TSAfter inserting C, S, D, T:

Inserting A

D T

A C D S T



Insertion into a B-Tree:            
Recursive Split

P W

D M P T W

A B C D

G I M

N P U W

R S T

D      M      P      W

A    B    C    D G       I       M           N      P      S      T      U      W

Inserting R



Formal Definition of B-Tree 
Properties

In a B-Tree of order m,
• Every page has a maximum of m descendants
• Every page, except for the root and leaves, has at 

least m/2 descendants.
• The root has at least two descendants (unless it is 

a leaf).
• All the leaves appear on the same level.
• The leaf level forms a complete, ordered index of 

the associated data file.



Worst-Case Search Depth I

• Given 1,000,000 keys and a B-Tree of order 512,  what is 
the maximum number of disk accesses necessary to locate a 
key in the tree? In other words, how deep will the tree be?

• Each key appears in the leaf ==> What is the maximum 
height of a tree with 1,000,000 leaves?

• The maximum height will be reached if all pages (or nodes) 
in the tree has the minimum allowed number of descendents

• For a B-Tree of order m, the minimum number of 
descendents from the root page is 2. It is m/2 for all the     
.                other pages.



Worst-Case Search Depth II

• For any level d of a B-Tree, the minimum number 
of descendants extending from that level is      
.                        2 m/2 d-1

• For a tree with N keys in its leaves, we have
N≥ 2 m/2 d-1

⇔ d ≤ 1 + logm/2 (N/2)
• For m= 512 and N= 1,000,000, we thus get            

d ≤ 3.37



Deletion from a B-Tree: Rules 
for Deleting a key k from a node 

n• If n has more than the number of keys and the k is not the 
largest in n, simply delete k from n.

• If n has more than the minimum number of keys and the k is 
the largest in n, delete k and modify the higher level indexes 
to reflect the new largest key in n.

• If n has exactly the minimum number of keys and one of the 
siblings of n has few enough keys, merge n with its sibling 
and delete a key from the parent node.

• If n has exactly the minimum number of keys and one of the 
siblings of n has extra keys, redistribute by moving some 
keys from a sibling to n, and modify the higher level 
indexes to reflect the new largest keys in the affected nodes.



Deletion from a B-Tree: Example
I     P       Z

D       G       I M       P      T        X       Z

A       B       C       D J K       L     M Q       R      S    T Y       Z 

E       F       G H       I      N       O       P U      V    W  X

• Problem 1: Delete C
• Problem 2: Delete P
• Problem 3: Delete H



Redistribution during Insertion

• Redistribution during insertion is a way to 
avoid, or at least postpone, the creation of 
new pages.

• Redistribution allows us to place some of 
the overflowing keys into another page 
instead of splitting an overflowing page.

• B* Trees formalize this idea



Properties of a B* Tree
• Every page has a maximum of m descendants.
• Every page except for the root has at least  (2m-

1)/3 descendants.
• The root has at least two descendants (unless it is a leaf)
• All the leaves appear on the same level.
The main difference between a B-Tree and a B* Tree is in 

the second rule.



Data and File Structures

Indexed Sequential File Access 
and Prefix B+ Trees



Indexed Sequential Access
• Up to this point, we have had to choose between 

viewing a file from an indexed point of view or 
from a sequential point of view.

• Here, we are looking for a single organizational 
method that provides both of these views 
simultaneously.

• Why care about obtaining both views 
simultaneously? If an application requires both 
interactive random access and cosequential batch 
processing, both sets of actions have to be carried 
out efficiently. (E.g., a student record system at a 
University). 



Maintaining a Sequence Set: The 
Use of Blocks I

• A sequence set is a set of records in physical key 
order which is such that it stays ordered as records 
are added and deleted. 

• Since sorting and resorting the entire sequence set as 
records are added and deleted is expensive, we look 
at other strategies. In particular, we look at a way to 
localize the changes.

• The idea is to use blocks that can be read into 
memory and rearranged there quickly. Like in B-
Trees, blocks can be split, merged or their records 
re-distributed as necessary.



Maintaining a Sequence Set: The 
Use of Blocks II

• Using blocks, we can thus keep a sequence set in order 
by key without ever having to sort the entire set of 
records.

• However, there are certain costs associated with this 
approach:
– A Blocked file takes up more space than an 

unblocked file because of internal fragmentation.
• The order of the records is not necessarily physically

sequential throughout the file. The maximum 
guaranteed extent of physical sequentiality is within a 
block.



Maintaining a Sequence Set: The 
Use of Blocks III

• An important aspect of using blocks is the choice 
of a block size. There are 2 considerations to keep 
in mind when choosing a block size:
– The block size should be such that we can hold 

several blocks in memory at once
– The block size should be such that we can 

access a block without having to bear the cost 
of a disk seek within the block read or block 
write operation.



Adding a Simple Index to the 
Sequence Set

• Each of the blocks we created for our Sequence 
Set contains a range of records that might contain 
the record we are seeking.

• We can construct a simple single-level index for 
these blocks.

• The combination of this kind of index with the 
sequence set of blocks provides complete indexed 
sequential access. This method works well as long 
as the entire index can be held in memory.

• If the entire index cannot be held in memory, then 
we can use a B+ Tree which is a B-Tree index 
plus a sequence set that holds the records.



The Content of the Index: 
Separators Instead of Keys

• The index serves as a kind of road map for for the 
sequence set ==> We do not need to have keys in 
the index set.

• What we really need are separators capable of 
distinguishing between two blocks.

• We can save space by using variable-length 
separators and placing the shortest separator in the 
index structure.

• Rules are:  Key < separator ==> Go left                   
. Key = separator ==> Go right                
.  Key > separator ==> Go right



The Simple Prefix B+ Tree

• The separators we just identified can be formed 
into a B-Tree index of the sequence set blocks and 
the B-Tree index is called the index set.

• Taken together with the sequence set, the index set 
forms a file structure called a simple prefix B+ 
Tree.

• “simple prefix” indicates that the index set 
contains shortest separators, or prefixes of the 
keys rather than copies of the actual keys.



Simple Prefix B+ Tree 
Maintenance

• Changes localized to single blocks in the sequence set: 
Make the changes to the sequence set and to the index set.

• Changes involving multiple blocks in the sequence set:
– If blocks are split in the sequence set, a new separator 

must be inserted into the index set
– If blocks are merged in the sequence set, a separator 

must be removed from the index set.
– If records are re-distributed between blocks in the 

sequence set, the value of a separator in the index set 
must be changed.



Index Set Block Size
• The physical size of a node for the index set is usually the same as the 

physical size of a block in the sequence set. We, then, speak of index 
set blocks, rather than nodes.

• There are a number of reasons for using a common block size for the 
index and sequence sets:
– The block size for the sequence set is usually chosen because there 

is a good fit among this block size, the characteristics of the disk 
drive, and the amount of memory available.

– A common block size makes it easier to implement a buffering 
scheme to create a virtual simple prefix B+Tree

– The index set blocks and sequence set blocks are often mingled 
within the same file to avoid seeking between 2 separate files 
while accessing the simple prefix B+Tree.



Internal Structure of Index Set 
Blocks: A Variable-Order B-Tree
• Given a large, fixed-size block for the index set, how 

do we store the separators within it?
• There are many ways to combine the list of 

separators, the index to separators, and the list of 
Relative Block Numbers (RBNs) into a single index 
set block.

• One possible approach includes a separator count 
and keeps a count of the total length of separators.



Loading a Simple Prefix B+ Tree I

• Successive Insertions is not a good method because 
splitting and redistribution are relatively expensive and 
would be best to use only for tree maintenance.

• Starting from a sorted file, however, we can place the 
records into sequence set blocks one by one, starting a 
new block when the one we are working with fills up. As 
we make the transition between two sequence set blocks, 
we can determine the shortest separator for the blocks. 
We can collect these separators into an index set block 
that we build and hold in memory until it is full.



Loading a Simple Prefix B+ Tree II: 
Advantages 

• The advantages of loading a simple Prefix B+ Tree almost 
always outweigh the disadvantages associated with the 
possibility of creating blocks that contain too few records or 
too few separators.

• A particular advantage is that the loading process goes more 
quickly because:
– The output can be written sequentially;
– we make only one pass over the data;
– No blocks need to be reorganized as we proceed.

• Advantages after the tree is loaded
– The blocks are 100% full.
– Sequential loading creates a degree of spatial locality

within our file ==> Seeking can be minimized.



B+ Trees
• The difference between a simple prefix B+ Tree and a plain 

B+ Tree is that the plain B+ Tree does not involve the use of 
prefixes as separators. Instead, the separators in the index 
set are simply copies of the actual keys.

• Simple Prefix B+ Tree are often more desirable than plain 
B+ Trees because the prefix separators take up less space 
than the full keys.

• B+ Trees, however, are sometimes more desirable since 1) 
they do not need variable length separator fields and 2) 
some key sets are not always easy to compress effectively.



B-Trees, B+Trees and Simple 
Prefix B+ Trees in Perspective I

• B and B+ Trees are not the only tools useful for File Structure Design. 
Simple Indexes are useful when they can be held fully into memory and 
Hashing can provide much faster access than B and B+ Trees.

• Common Characteristics of B and B+ and Prefix B+ Trees:
– Paged Index Structures ==> Broad and shallow trees
– Height-Balanced Trees
– The trees are grown Bottom Up and the operations used are: block

splitting, merging and re-distribution
– Two-to-Three Splitting and redistribution can be used to obtain 

greater storage efficiency.
– Can be implemented as Virtual Tree Structures.
– Can be adapted for use with variable-length records.



B-Trees, B+Trees and Simple 
Prefix B+ Trees in Perspective II

Differences between the various structures:
• B-Trees: multi-level indexes to data files that are entry-

sequenced. Strengths: simplicity of implementation. 
Weaknesses: excessive seeking necessary for sequential 
access.

• B-Trees with Associated Information: These are B-Trees 
that contain record contents at every level of the B-Tree. 
Strengths: can save up space. Weaknesses: Works only 
when the record information is located within the B-Tree. 
Otherwise, too much seeking is involved in retrieving the 
record information.



B-Trees, B+Trees and Simple 
Prefix B+ Trees in Perspective III

Differences between the various structures (Cont’d):
• B+ Trees: In a B+ Tree all the key and record info is 

contained in a linked set of blocks known as the sequence 
set. Indexed access is provided through the Index Set. 
Advantages over B-Trees: 1) The sequence set can be 
processed in a truly linear, sequential way; 2) The index is 
built with a single key or separator per block of data records 
rather than with one key per data record. ==> index is 
smaller and hence shallower.

• Simple Prefix B+ Trees: The separators in the index set are 
smaller than the keys in the sequence set ==> Tree is even 
smaller.



Data and File Structures

Hashing



Motivation
• Sequential Searching can be done in O(N) access time, 

meaning that the number of seeks grows in proportion to 
the size of the file.

• B-Trees improve on this greatly, providing O(Logk N)
access where k is a measure of the leaf size (i.e., the 
number of records that can be stored in a leaf).

• What we would like to achieve, however, is an O(1) 
access, which means that no matter how big a file grows, 
access to a record always takes the same small number of 
seeks. 

• Static Hashing techniques can achieve such performance 
provided that the file does not increase in time.



What is Hashing?
• A Hash function is a function h(K) which transforms a 

key K into an address.
• Hashing is like indexing in that it involves associating 

a key with a relative record address.
• Hashing, however, is different from indexing in two 

important ways:
– With hashing, there is no obvious connection 

between the key and the location.
– With hashing two different keys may be transformed 

to the same address. 



Collisions

• When two different keys produce the same 
address, there is a collision. The keys involved are 
called synonyms.

• Coming up with a hashing function that avoids 
collision is extremely difficult. It is best to simply 
find ways to deal with them.

• Possible Solutions:
– Spread out the records
– Use extra memory
– Put more than one record at a single address.



A Simple Hashing Algorithm

• Step 1: Represent the key in 
numerical form

• Step 2: Fold and Add
• Step 3: Divide by a prime number 

and use the remainder as the 
address.



Hashing Functions and Record 
Distributions

• Records can be distributed among addresses in 
different ways: there may be (a) no synonyms (uniform 
distribution); (b) only synonyms (worst case); (c) a few 
synonyms (happens with random distributions).

• Purely uniform distributions are difficult to obtain and 
may not be worth searching for.

• Random distributions can be easily derived, but they 
are not perfect since they may generate a fair number 
of synonyms.

• We want better hashing methods. 



Some Other Hashing Methods

• Though there is no hash function that guarantees 
better-than-random distributions in all cases, by 
taking into considerations the keys that are being 
hashed, certain improvements are possible.

• Here are some methods that are potentially better 
than random:
– Examine keys for a pattern
– Fold parts of the key
– Divide the key by a number
– Square the key and take the middle
– Radix transformation



Predicting the Distribution of 
Records

• When using a random distribution, we can use a 
number of mathematical tools to obtain 
conservative estimates of how our hashing 
function is likely to behave:

• Using the Poisson Function   p(x)=(r/N)xe-(r/N)/x! 
applied to Hashing, we can conclude that:

• In general, if there are N addresses, then the 
expected number of addresses with x records 
assigned to them is Np(x)



Predicting Collisions for a Full 
File

• Suppose you have a hashing function that you 
believe will distribute records randomly and you 
want to store 10,000 records in 10,000 addresses.

• How many addresses do you expect to have no 
records assigned to them?

• How many addresses should have one, two, and 
three records assigned respectively?

• How can we reduce the number of overflow 
records?



Increasing Memory Space I

• Reducing collisions can be done by choosing a good 
hashing function or using extra memory.

• The question asked here is how much extra memory 
should be use to obtain a given rate of collision reduction?

• Definition: Packing density refers to the ratio of the 
number of records to be stored (r) to the number of 
available spaces (N).

• The packing density gives a measure of the amount of 
space in a file that is used.



Increasing Memory Space II
• The Poisson Distribution allows us to predict the number          

of collisions that are likely to occur given a certain packing 
density. We use the Poisson Distribution to answer the 
following questions:

• How many addresses should have no records assigned to    
them?

• How many addresses should have exactly one record 
assigned (no synonym)?

• How many addresses should have one record plus one or      
more synonyms?

• Assuming that only one record can be assigned to each home 
address, how many overflow records can be expected?

• What percentage of records should be overflow records?



Collision Resolution by 
Progressive Overflow

• How do we deal with records that cannot fit into their home 
address? A simple approach: Progressive Overflow or 
Linear Probing.

• If a key, k1,  hashes into the same address, a1, as another 
key, k2, then look for the first available address, a2,  
following a1 and place k1 in a2. If the end of the address 
space is reached, then wrap around it. 

• When searching for a key that is not in, if the address space 
is not full, then an empty address will be reached or the 
search will come back to where it began.



Search Length when using 
Progressive Overflow

• Progressive Overflow causes extra searches and 
thus extra disk accesses.

• If there are many collisions, then many records 
will be far from “home”.

• Definitions: Search length refers to the number of 
accesses required to retrieve a record from 
secondary memory. The average search length is 
the average number of times you can expect to 
have to access the disk to retrieve a record.

• Average search length = (Total search 
length)/(Total number of records)



Storing More than One Record 
per Address: Buckets

• Definition: A bucket describes a block of records 
sharing the same address that is retrieved in one 
disk access.

• When a record is to be stored or retrieved, its 
home bucket address is determined by hashing. 
When a bucket is filled, we still have to worry 
about the record overflow problem, but this occurs 
much less often than when each address can hold 
only one record.



Effect of Buckets on 
Performance

• To compute how densely packed a file is, we need 
to consider 1) the number of addresses, N,  
(buckets) 2) the number of records we can put at 
each address, b, (bucket size) and 3)  the number 
of records, r. Then, Packing Density = r/bN.

• Though the packing density does not change when 
halving the number of addresses and doubling the 
size of the buckets, the expected number of 
overflows decreases  dramatically.



Making Deletions
• Deleting a record from a hashed file is more 

complicated than adding a record for two reasons:
– The slot freed by the deletion must not be allowed to 

hinder later searches
– It should be possible to reuse the freed slot for later 

additions.
• In order to deal with deletions we use tombstones, i.e., 

a marker indicating that a record once lived there but 
no longer does. Tombstones solve both the problems 
caused by deletion.

• Insertion of records is slightly different when using 
tombstones.



Effects of Deletions and 
Additions on Performance

• After a large number of deletions and additions 
have taken places, one can expect to find many 
tombstones occupying places that could be 
occupied by records whose home address precedes 
them but that are stored after them. 

• This deteriorates average search lengths.
• There are 3 types of solutions for dealing with this 

problem: a) local reorganization during deletions; 
b) global reorganization when the average search 
length is too large; c) use of a different collision 
resolution algorithm. 



Other Collision Resolution 
Techniques

• There are a few variations on random hashing that 
may improve performance:
– Double Hashing: When an overflow occurs, use a 

second hashing function to map the record to its 
overflow location.

– Chained Progressive Overflow: Like Progressive 
overflow except that synonyms are linked together with 
pointers.

– Chaining with a Separate Overflow Area: Like 
chained progressive overflow except that overflow 
addresses do not occupy home addresses.

– Scatter Tables: The Hash file contains no records, but 
only pointers to records. I.e., it is an index.



Pattern of Record Access

• If we have some information about what records 
get accessed most often, we can optimize their 
location so that these records will have short 
search lengths.

• By doing this, we try to decrease the effective 
average search length even if the nominal average 
search length remains the same.

• This principle is related to the one used in 
Huffman encoding.



THE END

For more info visit

http://engginfo2002.tripod.com


