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Transport Layer (1/2)

Essence: The transport layer is responsible for com-
pleting the services of the underlying network to the
extent that application development can take place:

• provide reliable connection-oriented services

• provide unreliable connectionless services

• provide parameters for specifying quality of ser-
vices

Important: we’re talking about efficient and cost-effective
services, in particular reliable connections.

Note: depending on the services offered by the net-
work layer, the added functionality in the transport layer
can vary considerably.

06 – 1 Transport Layer/6.1 Transport Service

Transport Layer (2/2)
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Note: The issue here is that the network layer is in the
hands of carriers: organizations that offer a (generally
wide-area) computer network to their clients. Clients
have no say in what the carrier actually offers.

Consequence: If we want to develop applications
that are independent of the particular services offered
by a carrier, we’ll have to devise a standard commu-
nication interface and implement that interface at the
client’s sites. The transport layer contains such imple-
mentations.
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Transport Layer Interface

Example: Consider the Berkeley socket interface,
which has been adopted by most UNIX systems, as
well as Windows 95/NT/2000/XP:

SOCKET Create a new communication endpoint
BIND Attach a local address to a socket
LISTEN Announce willingness to accept N con-

nections
ACCEPT Block until someone remote wants to

establish a connection
CONNECT Attempt to establish a connection
SEND Send data over a connection
RECEIVE Receive data over a connection
CLOSE Release the connection
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Socket Communication

• The client and server each bind a transport-level
address and a name to the locally created socket.

• The server must listen to its socket, thereby telling
the kernel that it will subsequently wait for con-
nections from clients.

• After that, the server can accept or select con-
nections from clients.

• The client connects to the socket. It needs to
provide the transport-level address by which it can
locate the server.

After a connection has been accepted (or selected),
the client and server communicate through read/write
operations on their respective sockets.

Communication ends when a connection is closed.
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Connection-Oriented Socket
Communication

socket()

bind()
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socket()
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read()

close()close()

SERVER CLIENT

Question: What about connectionless communica-
tion?
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Sockets – Server Side
serverAddress : TransportAddress /* Publicly known address */
...
PROCESS Server IS

clientSocket : Socket; /* Private socket */
...
BEGIN

serverSocket := NEW Socket;
serverSocket.bind(serverAddress);
serverSocket.listen(maxConnections);
LOOP

serverSocket.accept(clientSocket);
clientSocket.read(request); /* receive */
clientSocket.write(answer); /* send */
clientSocket.close();

END LOOP;
END Server;
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Sockets – Client Side
serverAddress : TransportAddress /* Publicly known address */
...
PROCESS Client IS

clientAddress : TransportAddress; /* Private address */
clientSocket : Socket; /* Private socket */
...
BEGIN
clientAddress := NEW TransportAddress;
clientSocket := NEW Socket;

clientSocket.bind(clientAddress);
LOOP

IF clientSocket.connect(serverAddress)
THEN EXIT;
ELSE sleep(1);

END IF;
END LOOP;

clientSocket.write(request); /* send */
clientSocket.read(answer); /* read */
clientSocket.close();
END Client;

Question: What am I doing in the loop?
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Some Observations

Note 1: Messages sent by clients are encapsulated
as transport protocol data units (TPDUs) to the net-
work layer:

Frame

header

Packet
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TPDU

header

TPDU payload

Frame payload

Packet payload

Note 2: A real hard part is establishing and releasing
connections. The model can be either symmetric or
asymmetric:

Symmetric: one side sends a disconnect request, and
waits for the other to acknowledge that the con-
nection is closed. Yes, there are some problems
with this model. In fact, it turns out it is impossible
to implement.

Asymmetric: one side just closes the connection, and
that’s it. Yes, it’s simple, but you may lose some
data this way. Not really acceptable.
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Sockets – State Diagram
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Note: Dashed lines are server state transitions; solid
lines client state transitions.
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Transport Protocol

Observation: transport protocols strongly resemble
those in the data link layer: e.g. lots of error and flow
control. Big differences when it comes to solutions!
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Subnet

• explicit addressing

• establishing, maintaining, and releasing connec-
tions

• the many connections require different solutions

• handle effects of subnet storage capabilities
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Addressing

Note: Each layer has its own way of dealing with ad-
dresses. In IP, a transport service access point is
an IP address with a port number.
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Question: How do we get to know where the other
party is?
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Service Locations
Fixed Addresses

General solution: have a single process, located at
a well-known address, handle a large number of ser-
vices (inetd in the UNIX world):
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Service Locations
Unknown Addresses

Problem: Sometimes you just can’t have a process
handle all services, e.g. because the service requires
special hardware (file server) ⇒ find address of the
server

Solution: you’ll have to use a name server.

Question: Great, so how do we find the name server?

Next problem: A name server returns a TSAP, not
an NSAP. So how do we get to know the network ad-
dress?

Question: at what level do you think name servers fit
in?
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Connection Establishment

Basic idea: To establish a connection, you send off
a connection request to the other end. The other end
then accepts the connection, and returns an acknowl-
edgment.

Big problem: Suppose you don’t get an answer, so
you do another request.

• Your first request didn’t make it: no harm done.

• The ack didn’t make it back: you’re establishing a
second connection, but this can probably be de-
tected.

• Your first request didn’t make it yet : now you’re
really making a second connection and no one
knows you didn’t do this on purpose.

Main cause: The network has storage capabilities,
and unpredictable delays. This means that things can
pop up out of the blue.
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Attacking Duplicates (1/2)

Solution: Restrict the lifetime of TPDUs – if the max-
imum lifetime is known in advance, we can be sure
that a previous packet is discarded and that it won’t
interfere with successive ones.

Basic idea: Assign sequence numbers to TPDUs,
and let the sequence number space be so large that
no two outstanding TPDUs can have the same num-
ber.

Problem: When a host crashes, it has to start num-
bering TPDUs again. So, where does it start?

• You can’t just wait the maximum packet lifetime T
and start counting from the start again: in wide-
area systems, T may be too large to do that.

• The point is that you must avoid that an initial se-
quence number corresponds to a TPDU still float-
ing around. So, just find the right initial number.
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Attacking Duplicates (2/2)

Solution: Assign sequence numbers in accordance
to clock ticks, and assume that the clock continues
ticking during a crash. This leads to a forbidden re-
gion:
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Every time you want to assign a next sequence num-
ber, check whether that number is in the forbidden re-
gion.

Watch it: when sequence numbers are assigned at
a lower pace than the clock ticks, we may enter the
region “from the top.” Likewise, assigning them too
fast makes you enter the region “from the bottom.”
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Error-Free Connection
Establishment (1/2)

Problem: Great, we have a way of avoiding dupli-
cates, but how do we get a connection in the first
place?

Note: One way or the other we have to get the sender
and receiver to agree on initial sequence numbers.
We need to avoid that an old (unnumbered) connec-
tion request pops up.
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Error-free Connection
Establishment (2/2)

Solution: Three-way handshake.
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Error-free Connection Release

Asymmetric release: one party just closes down the
connection. May result in loss of data:
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Symmetric Connection Release
(1/2)

Big problem: Can we devise a solution to release a
connection such that the two parties will always agree.
The answer is simple: NO.

• Normal case: Host 1 sends disconnect request
(DR). Host 2 responds with a DR. Host 1 acknowl-
edges, and ACK arrives at host 2.

• ACK is lost: What should host 2 do? It doesn’t
know for sure that its DR came through.

• Host 2’s DR is lost: What should host 1 do? Of
course, send another DR, but this brings us back
to the normal case. This still means that the ACK
sent by host 1 may still get lost.

Pragmatic solution: Use timeout mechanisms. This
will catch most cases, but it is never a fool-proof solu-
tion: the initial DR and all retransmissions may still be
lost, resulting in a half-open connection.
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Symmetric Connection Release
(2/2)
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Flow Control and Buffering

Main problem: Hosts may have so many connections
that it becomes infeasible to allocate a fixed number
of buffers per connection to implement a proper sliding
window protocol ⇒ we need a dynamic buffer alloca-
tion scheme.

• With an unreliable network, i.e. unreliable data-
gram service provided by the network layer, the
sender will have to buffer TPDUs until they are
acknowledged.

• The receiver may decide to drop incoming TPDUs
if it has no buffer space available.

• With a reliable network, the sender will still have
to buffer a TPDU until it is acknowledged: the net-
work layer cannot help here! (WHY NOT?)

In general: the sender and receiver need to negotiate
the number of TPDUs that can be transmitted in se-
quence, only because buffer space no longer comes
for free.
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Buffer Reservation

Basic idea: The sender requests a number of buffers
at the receiver’s side when opening a connection. The
receiver responds with a credit grant. After that, the
receiver grants more credit when bufferspace becomes
available:
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Question: what can we do about the potential dead-
lock?
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Flow Control – The Network

Problem: Now that we’ve adjusted the transmission
rate between the sender and receiver, let’s consider
the network capacity as well: it may not be enough for
what the sender and receiver want to do.

Issue: If the network can handle c TPDUs per sec-
ond, and takes a total of r seconds to transmit, prop-
agate, queue and process the TPDU, and to send an
ACK, the sender need only maintain c ·r buffers. More
buffers is overkill of the network.

Solution: Let the sender estimate c and r (HOW?)
and adjust its own number of buffers.
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Multiplexing

Basic idea 1: Assuming that the network offers only a
limited number of virtual circuits, or that a user doesn’t
want to pay so much, then use a single circuit for sev-
eral connections ⇒ upward multiplexing.

Basic idea 2: If a user requires a lot of bandwidth
that cannot be supported by a single network virtual
circuit, use several circuits for a single connection ⇒

downward multiplexing.
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Crash Recovery (1/2)

Problem: A host responds to the receipt of a TPDU
by performing an operation and returning an acknowl-
edgment. How should the sending host respond when
the receiving host crashes before, during, or after its
response?
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Crash Recovery (2/2)

Situation: Assume the sender is informed that the
receiver has just recovered from a crash. Should the
sender retransmit the TPDU it just sent, or not? Dis-
tinguish between:

• S0: sender had no outstanding (unacknowledged)
TPDUs

• S1: sender had one outstanding TPDU

Always retransmit OK DUP OK

LOST OK LOST

OK DUP LOST

LOST OK OK

Never retransmit

Retransmit in S0

Retransmit in S1

AC(W)
Strategy used by


sending host AWC

First ACK, then write First  write, then ACK

C(AW)

OK DUP DUP

LOST OK OK

LOST DUP OK

OK OK DUP

C(WA) W AC WC(A)

OK      = Protocol functions correctly

DUP   = Protocol generates a duplicate message

LOST = Protocol loses a message

Strategy used by receiving host
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Example Protocol
Service Primitives

LISTEN Block connection request comes in
CONNECT Attempt to establish a connection
SEND Send data over a connection
RECEIVE Receive data over a connection
DISCONNECT Release the connection

Network Layer Packets
CALL REQUEST Sent to establish a connection
CALL ACCEPTED Response to CALL REQUEST
CLEAR REQUEST Sent to release a connection
CLEAR CONFIRM Response to CLEAR CONNECTION
DATA Used to transport data
CREDIT For managing the window

State of a Connection
IDLE Not yet established
WAITING CONNECT called; CALL REQ. sent
QUEUED CALL REQ. arrived; LISTEN not called
ESTABLISHED Connection established
SENDING Waiting for permission to send TPDU
RECEIVING RECEIVE has just been called
DISCONNECTING DISCONNECT ahs just been called
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Example Protocol – FSM (1/2)
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Example Protocol – FSM (2/2)
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UDP

Essence: The User Datagram Protocol is essentially
just a transport-level version of IP.

32 Bits

Source port

UDP length

Destination port

UDP checksum

Observation: UDP is simple: no flow control, no error
control, no retransmissions

Question: So why not use IP instead?
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RPC

Observation: UDP is widely used for simple client-
server communication in which a procedure is made
available to remote clients (Remote Procedure Call).
The call (including its parameters) is shipped to the
server:

Client CPU

Client
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Network

1. Client calls the procedure at a local stub
2. Client stub marshalls request: it puts everything

into a (UDP) message
3. The message is transferred over the network
4. The server stub unmarshalls the message...
5. ... and calls the local implementation of the pro-

cedure.

Question: What’s the difficulty with RPCs?
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RTP

Problem: Can we support multimedia streaming over
the Internet? The Real-Time Transport Protocol pro-
vides some best-effort support.

Multimedia application

RTP
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Essence: RTP essentially just multiplexes a number
of multimedia streams into a single UDP stream. The
receiver is responsible for compensating missing pack-
ets (which is highly application dependent).

Real-time: RTP packets can be timestamped: pack-
ets belonging to the same substream can receive a
timestamp indicating how far off they are with respect
to their predecessor. This approach allows the system
to reduce jitter. In addition, timestamps can be used
to synchronize multiple substreams.
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Transmission Control Protocol
(TCP)

• Connection-oriented service that supports byte
streams (not message streams). A sender may
send eight 512-byte packets that are received as
two chunks of 1024 bytes, and one of 2048 bytes.

• Transport address consists of a 16-bit port num-
ber, which augments the underlying IP address.

• TCP ensures reliable, point–to–point connections.
No support for multicasting or broadcasting.

• A TCP TPDU is called a segment, consisting of
(minimal) 20-byte header, and maximum total length
of 65,535 bytes. A segment is fragmented by the
network layer when it is larger than the network’s
maximum transfer unit (MTU).
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TCP Header
32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP

header

length
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Window size

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

• Acknowledgments are piggybacked when ACK =
1.

• SYN is for connection setup (ACK = 0: request;
ACK = 1: accepted).

• FIN is for connection release. Data sent before
the release is not lost.

• URG indicates immediate processing and trans-
mission: the receiver is signalled.
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TCP Connection Management

Connection establishment: Uses three-way hand-
shake protocol.

Connection release: To be thought of as indepen-
dent releases of two simplex connections:

State Textlist
CLOSED No connection active or pending
LISTEN Server waiting for conn. request
SYN RCVD Conn. request has arrived; wait for ACK
SYN SENT Conn. request just sent; wait for SYN+ACK
ESTABLISHED Data can be sent and received
FIN WAIT 1 Client just sent conn. release
FIN WAIT 2 Server just agreed to release connection
TIMED WAIT Wait for all packets to die
CLOSING Client & server both tried to close
CLOSE WAIT Other side initiated release
LAST ACK Wait for all packets to die
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TCP Connection Management
Release
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TCP Window Management (1/2)

Basic idea: The receiver sends an acknowledgment
for the next byte that can be sent in the current stream,
and the maximum number of bytes that may be sent.
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TCP Window Management (2/2)

Important: The TCP entity is not obliged to immedi-
ately transmit data that the application hands over: it
can do as much buffering as it likes. Same goes for
acknowledgments.

Example: Interactive, character-oriented applications.
Rather than sending one byte at a time, buffer as much
characters as possible until the previous batch is ac-
knowledged (Nagle’s algorithm). Note: we’re always
stuck to at least 40 bytes of overhead per TPDU.

Example: Avoid the silly window syndrome where
the server is reading one byte at a time (and acknowl-
edges one at a time). Instead, the receiver should wait
until it can receive a reasonable amount of bytes in a
row.
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TCP Congestion Control (1/2)

Problem: As before, the transport layer has to take
into account that the underlying network can be the
bottleneck. Question is how to detect and react to
congestion.

Solution: use a congestion window next to the win-
dow granted by the receiver. The actual window size
is the minimum of the two.

• Initialize congestion window to maximum segment
size to be used in the connection. Send it off. If it
gets acknowledged, double the size. Repeat un-
til failure. Leads to initial congestion window size
(slow start).

• In addition, use a threshold. On a timeout, lower
the threshold to 50 % of the congestion window
size, do a slow start (exponential) until new thresh-
old, and add maximum segment size to conges-
tion window size after that (linear growth).
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TCP Congestion Control (2/2)
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TCP Timer Management

Main issue: How do we determine the best timeout
value for retransmitting segments in the face of a large
standard deviation of round-trip delays:

T T1 T20.3
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RT T best current estimate of round-trip delay
D estimate of deviation of round-trip delays
M measured round-trip delay

RT T = αRT T +(1−α)M

D = αD+(1−α)|RTT −M|

timeout = RT T +4 ·D
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Wireless TCP

Problem: TCP assumes that IP is running across
wires. When packets are lost, TCP assumes this is
caused by congestion and slows down. In wireless
environments, packets get lost due reliability issues.
In those cases, TCP should do the opposite: try harder.

Solution #1: Split TCP connections to distinguished
wired/wireless IP:

Sender Base

station

Mobile

host

Antenna

TCP #1

TCP #2

Router

Solution #2: Let the base station do at least some
retransmissions, but without informing the source. Ef-
fectively, the base station makes an attempt to im-
prove the reliability of IP as perceived by TCP.
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Client–Server TCP

Transactional TCP: A TCP-based transport protocol
aimed to support client–server interaction

Client Server

SYN

SYN, ACK(SYN) 2
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Time

Client Server

SYN, request, FIN

ACK(FIN)

(a) (b)

SYN, ACK(FIN), reply, FIN

Timerequest

FIN

ACK(request + FIN)

FIN

reply
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