
Computer Networks

Chapter 06

Maarten van Steen

Vrije Universiteit Amsterdam
Faculty of Science

Department of Computer Science
Room R4.20. Tel: (020) 444 7784

steen@cs.vu.nl

00 – 1 /

Contents

01 Introduction
02 Physical Layer
03 Data Link Layer
04 MAC Sublayer
05 Network Layer
06 Transport Layer
07 Application Layer
08 Network Security

00 – 2 /

Transport Layer (1/2)

Essence: The transport layer is responsible for com-
pleting the services of the underlying network to the
extent that application development can take place:

• provide reliable connection-oriented services

• provide unreliable connectionless services

• provide parameters for specifying quality of ser-
vices

Important: we’re talking about efficient and cost-effective
services, in particular reliable connections.

Note: depending on the services offered by the net-
work layer, the added functionality in the transport layer
can vary considerably.

06 – 1 Transport Layer/6.1 Transport Service

Transport Layer (2/2)

Application/transport

interface

Transport/network

interface

Application

(or session)

layer

Transport

entity

Transport

address

Network

address

Network layer

Application

(or session)

layer

Transport

entity

Network layer

TPDU

Transport

protocol

Host 1 Host 2

Note: The issue here is that the network layer is in the
hands of carriers: organizations that offer a (generally
wide-area) computer network to their clients. Clients
have no say in what the carrier actually offers.

Consequence: If we want to develop applications
that are independent of the particular services offered
by a carrier, we’ll have to devise a standard commu-
nication interface and implement that interface at the
client’s sites. The transport layer contains such imple-
mentations.
06 – 2 Transport Layer/6.1 Transport Service

Transport Layer Interface

Example: Consider the Berkeley socket interface,
which has been adopted by most UNIX systems, as
well as Windows 95/NT/2000/XP:

SOCKET Create a new communication endpoint
BIND Attach a local address to a socket
LISTEN Announce willingness to accept N con-

nections
ACCEPT Block until someone remote wants to

establish a connection
CONNECT Attempt to establish a connection
SEND Send data over a connection
RECEIVE Receive data over a connection
CLOSE Release the connection

06 – 3 Transport Layer/6.1 Transport Service

Socket Communication

• The client and server each bind a transport-level
address and a name to the locally created socket.

• The server must listen to its socket, thereby telling
the kernel that it will subsequently wait for con-
nections from clients.

• After that, the server can accept or select con-
nections from clients.

• The client connects to the socket. It needs to
provide the transport-level address by which it can
locate the server.

After a connection has been accepted (or selected),
the client and server communicate through read/write
operations on their respective sockets.

Communication ends when a connection is closed.
06 – 4 Transport Layer/6.1 Transport Service

Connection-Oriented Socket
Communication

socket()

bind()

listen()

accept()

socket()

connect()

write()
read()

write()
read()

close()close()

SERVER CLIENT

Question: What about connectionless communica-
tion?

06 – 5 Transport Layer/6.1 Transport Service

Sockets – Server Side
serverAddress : TransportAddress /* Publicly known address */
...
PROCESS Server IS

clientSocket : Socket; /* Private socket */
...
BEGIN

serverSocket := NEW Socket;
serverSocket.bind(serverAddress);
serverSocket.listen(maxConnections);
LOOP

serverSocket.accept(clientSocket);
clientSocket.read(request); /* receive */
clientSocket.write(answer); /* send */
clientSocket.close();

END LOOP;
END Server;

06 – 6 Transport Layer/6.1 Transport Service

Sockets – Client Side
serverAddress : TransportAddress /* Publicly known address */
...
PROCESS Client IS

clientAddress : TransportAddress; /* Private address */
clientSocket : Socket; /* Private socket */
...
BEGIN
clientAddress := NEW TransportAddress;
clientSocket := NEW Socket;

clientSocket.bind(clientAddress);
LOOP

IF clientSocket.connect(serverAddress)
THEN EXIT;
ELSE sleep(1);

END IF;
END LOOP;

clientSocket.write(request); /* send */
clientSocket.read(answer); /* read */
clientSocket.close();
END Client;

Question: What am I doing in the loop?

06 – 7 Transport Layer/6.1 Transport Service

Some Observations

Note 1: Messages sent by clients are encapsulated
as transport protocol data units (TPDUs) to the net-
work layer:

Frame

header

Packet

header

TPDU

header

TPDU payload

Frame payload

Packet payload

Note 2: A real hard part is establishing and releasing
connections. The model can be either symmetric or
asymmetric:

Symmetric: one side sends a disconnect request, and
waits for the other to acknowledge that the con-
nection is closed. Yes, there are some problems
with this model. In fact, it turns out it is impossible
to implement.

Asymmetric: one side just closes the connection, and
that’s it. Yes, it’s simple, but you may lose some
data this way. Not really acceptable.

06 – 8 Transport Layer/6.1 Transport Service

Sockets – State Diagram

ACTIVE

ESTABLISHMENT

PENDING

PASSIVE

ESTABLISHMENT

PENDING

PASSIVE

DISCONNECT

PENDING

ACTIVE

DISCONNECT

PENDING

IDLE

IDLE

ESTABLISHED

Disconnection

request TPDU

received

Disconnect

primitive

executed

Disconnect

primitive executed

Disconnection request

TPDU received

Connection request

TPDU received

Connection accepted

TPDU received

Connect primitive

executed

Connect primitive

executed

Note: Dashed lines are server state transitions; solid
lines client state transitions.

06 – 9 Transport Layer/6.1 Transport Service

Transport Protocol

Observation: transport protocols strongly resemble
those in the data link layer: e.g. lots of error and flow
control. Big differences when it comes to solutions!

Router Router

Physical

communication channel

Host

(a) (b)

Subnet

• explicit addressing

• establishing, maintaining, and releasing connec-
tions

• the many connections require different solutions

• handle effects of subnet storage capabilities

06 – 10 Transport Layer/6.2 Transport Protocol Elements

Addressing

Note: Each layer has its own way of dealing with ad-
dresses. In IP, a transport service access point is
an IP address with a port number.

Application

process

Application

layer

Transport

connection

TSAP 1522

TSAP 1208

NSAP
NSAP

Transport

layer

Network

layer

Data link

layer

Physical

layer

Server 1

Host 1 Host 2

Server 2

TSAP1836

Question: How do we get to know where the other
party is?

06 – 11 Transport Layer/6.2 Transport Protocol Elements

Service Locations
Fixed Addresses

General solution: have a single process, located at
a well-known address, handle a large number of ser-
vices (inetd in the UNIX world):

Layer

4
TSAP

Time-

of-day

server

(a) (b)

Host 1 Host 2 Host 1 Host 2

Process

Server

User User Process

Server

06 – 12 Transport Layer/6.2 Transport Protocol Elements

Service Locations
Unknown Addresses

Problem: Sometimes you just can’t have a process
handle all services, e.g. because the service requires
special hardware (file server) ⇒ find address of the
server

Solution: you’ll have to use a name server.

Question: Great, so how do we find the name server?

Next problem: A name server returns a TSAP, not
an NSAP. So how do we get to know the network ad-
dress?

Question: at what level do you think name servers fit
in?

06 – 13 Transport Layer/6.2 Transport Protocol Elements

Connection Establishment

Basic idea: To establish a connection, you send off
a connection request to the other end. The other end
then accepts the connection, and returns an acknowl-
edgment.

Big problem: Suppose you don’t get an answer, so
you do another request.

• Your first request didn’t make it: no harm done.

• The ack didn’t make it back: you’re establishing a
second connection, but this can probably be de-
tected.

• Your first request didn’t make it yet : now you’re
really making a second connection and no one
knows you didn’t do this on purpose.

Main cause: The network has storage capabilities,
and unpredictable delays. This means that things can
pop up out of the blue.

06 – 14 Transport Layer/6.2 Transport Protocol Elements

Attacking Duplicates (1/2)

Solution: Restrict the lifetime of TPDUs – if the max-
imum lifetime is known in advance, we can be sure
that a previous packet is discarded and that it won’t
interfere with successive ones.

Basic idea: Assign sequence numbers to TPDUs,
and let the sequence number space be so large that
no two outstanding TPDUs can have the same num-
ber.

Problem: When a host crashes, it has to start num-
bering TPDUs again. So, where does it start?

• You can’t just wait the maximum packet lifetime T
and start counting from the start again: in wide-
area systems, T may be too large to do that.

• The point is that you must avoid that an initial se-
quence number corresponds to a TPDU still float-
ing around. So, just find the right initial number.

06 – 15 Transport Layer/6.2 Transport Protocol Elements

Attacking Duplicates (2/2)

Solution: Assign sequence numbers in accordance
to clock ticks, and assume that the clock continues
ticking during a crash. This leads to a forbidden re-
gion:

120

80
70
60

0
30 60 90

Time

(a)

Time

(b)

120 150 1800

S
eq

ue
nc

e
nu

m
be

rs

S
eq

ue
nc

e
nu

m
be

rs

Forbidden

message

Restart after

crash with 70

TT

Actual sequence

numbers used

2k–1

Fo
rb

id
de

n

re
gi

on

Every time you want to assign a next sequence num-
ber, check whether that number is in the forbidden re-
gion.

Watch it: when sequence numbers are assigned at
a lower pace than the clock ticks, we may enter the
region “from the top.” Likewise, assigning them too
fast makes you enter the region “from the bottom.”

06 – 16 Transport Layer/6.2 Transport Protocol Elements

Error-Free Connection
Establishment (1/2)

Problem: Great, we have a way of avoiding dupli-
cates, but how do we get a connection in the first
place?

Note: One way or the other we have to get the sender
and receiver to agree on initial sequence numbers.
We need to avoid that an old (unnumbered) connec-
tion request pops up.

06 – 17 Transport Layer/6.2 Transport Protocol Elements

Error-free Connection
Establishment (2/2)

Solution: Three-way handshake.

T
im

e

DATA (seq = x, ACK = y)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2

REJECT (ACK = y)

DATA (seq = x,
ACK = z)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2

REJECT (ACK = y)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2

Old duplicate

Old duplicate

Old duplicate

(a) (b)

(c)

06 – 18 Transport Layer/6.2 Transport Protocol Elements

Error-free Connection Release

Asymmetric release: one party just closes down the
connection. May result in loss of data:

T
im

e

CR

DATA

DATA

Host 1 Host 2

ACK

DR

No data are

delivered after

a disconnect

request

06 – 19 Transport Layer/6.2 Transport Protocol Elements

Symmetric Connection Release
(1/2)

Big problem: Can we devise a solution to release a
connection such that the two parties will always agree.
The answer is simple: NO.

• Normal case: Host 1 sends disconnect request
(DR). Host 2 responds with a DR. Host 1 acknowl-
edges, and ACK arrives at host 2.

• ACK is lost: What should host 2 do? It doesn’t
know for sure that its DR came through.

• Host 2’s DR is lost: What should host 1 do? Of
course, send another DR, but this brings us back
to the normal case. This still means that the ACK
sent by host 1 may still get lost.

Pragmatic solution: Use timeout mechanisms. This
will catch most cases, but it is never a fool-proof solu-
tion: the initial DR and all retransmissions may still be
lost, resulting in a half-open connection.

06 – 20 Transport Layer/6.2 Transport Protocol Elements

Symmetric Connection Release
(2/2)

DR

ACK

ACK

Host 1 Host 2

DR

DR

Send DR

+ start timer

Send DR

+ start timer

Send ACK

Release

connection

(Timeout)

release

connection

(Timeout)

release

connection

(N Timeouts)

release

connection

(Timeout)

send DR

+ start timer

Release

connection

DR

DR

Host 1 Host 2

DR

Send DR

+ start timer

Send DR &

start timer

Send DR &

start timer

Send DR &

start timer

Send ACK
Release

connection

Release

connection

DR

ACK

Host 1 Host 2

DR

Send DR

+ start timer

Send DR

+ start timer

Send ACK

Release

connection

Lost

Lost

(Timeout)

send DR

+ start timer

DR

Host 1 Host 2

Send DR

+ start timer

Lost

Lost

(a) (b)

(c) (d)

06 – 21 Transport Layer/6.2 Transport Protocol Elements

Flow Control and Buffering

Main problem: Hosts may have so many connections
that it becomes infeasible to allocate a fixed number
of buffers per connection to implement a proper sliding
window protocol ⇒ we need a dynamic buffer alloca-
tion scheme.

• With an unreliable network, i.e. unreliable data-
gram service provided by the network layer, the
sender will have to buffer TPDUs until they are
acknowledged.

• The receiver may decide to drop incoming TPDUs
if it has no buffer space available.

• With a reliable network, the sender will still have
to buffer a TPDU until it is acknowledged: the net-
work layer cannot help here! (WHY NOT?)

In general: the sender and receiver need to negotiate
the number of TPDUs that can be transmitted in se-
quence, only because buffer space no longer comes
for free.
06 – 22 Transport Layer/6.2 Transport Protocol Elements

Buffer Reservation

Basic idea: The sender requests a number of buffers
at the receiver’s side when opening a connection. The
receiver responds with a credit grant. After that, the
receiver grants more credit when bufferspace becomes
available:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

< request 8 buffers>

<ack = 15, buf = 4>

<seq = 0, data = m0>

<seq = 1, data = m1>

<seq = 2, data = m2>

<ack = 1, buf = 3>

<seq = 3, data = m3>

<seq = 4, data = m4>

<seq = 2, data = m2>

<ack = 4, buf = 0>

<ack = 4, buf = 1>

<ack = 4, buf = 2>

<seq = 5, data = m5>

<seq = 6, data = m6>

<ack = 6, buf = 0>

<ack = 6, buf = 4>

A wants 8 buffers

B grants messages 0-3 only

A has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 left

B acknowledges 0 and 1, permits 2-4

A has 1 buffer left

A has 0 buffers left, and must stop

A times out and retransmits

Everything acknowledged, but A still blocked

A may now send 5

B found a new buffer somewhere

A has 1 buffer left

A is now blocked again

A is still blocked

Potential deadlock

A BMessage Comments

Question: what can we do about the potential dead-
lock?
06 – 23 Transport Layer/6.2 Transport Protocol Elements

Flow Control – The Network

Problem: Now that we’ve adjusted the transmission
rate between the sender and receiver, let’s consider
the network capacity as well: it may not be enough for
what the sender and receiver want to do.

Issue: If the network can handle c TPDUs per sec-
ond, and takes a total of r seconds to transmit, prop-
agate, queue and process the TPDU, and to send an
ACK, the sender need only maintain c ·r buffers. More
buffers is overkill of the network.

Solution: Let the sender estimate c and r (HOW?)
and adjust its own number of buffers.

06 – 24 Transport Layer/6.2 Transport Protocol Elements

Multiplexing

Basic idea 1: Assuming that the network offers only a
limited number of virtual circuits, or that a user doesn’t
want to pay so much, then use a single circuit for sev-
eral connections ⇒ upward multiplexing.

Basic idea 2: If a user requires a lot of bandwidth
that cannot be supported by a single network virtual
circuit, use several circuits for a single connection ⇒

downward multiplexing.

Layer

4

3

2

1

To router

Router lines

Transport address

Network

address

(a) (b)

06 – 25 Transport Layer/6.2 Transport Protocol Elements

Crash Recovery (1/2)

Problem: A host responds to the receipt of a TPDU
by performing an operation and returning an acknowl-
edgment. How should the sending host respond when
the receiving host crashes before, during, or after its
response?

06 – 26 Transport Layer/6.2 Transport Protocol Elements

Crash Recovery (2/2)

Situation: Assume the sender is informed that the
receiver has just recovered from a crash. Should the
sender retransmit the TPDU it just sent, or not? Dis-
tinguish between:

• S0: sender had no outstanding (unacknowledged)
TPDUs

• S1: sender had one outstanding TPDU

Always retransmit OK DUP OK

LOST OK LOST

OK DUP LOST

LOST OK OK

Never retransmit

Retransmit in S0

Retransmit in S1

AC(W)
Strategy used by

sending host AWC

First ACK, then write First write, then ACK

C(AW)

OK DUP DUP

LOST OK OK

LOST DUP OK

OK OK DUP

C(WA) W AC WC(A)

OK = Protocol functions correctly

DUP = Protocol generates a duplicate message

LOST = Protocol loses a message

Strategy used by receiving host

06 – 27 Transport Layer/6.2 Transport Protocol Elements

Example Protocol
Service Primitives

LISTEN Block connection request comes in
CONNECT Attempt to establish a connection
SEND Send data over a connection
RECEIVE Receive data over a connection
DISCONNECT Release the connection

Network Layer Packets
CALL REQUEST Sent to establish a connection
CALL ACCEPTED Response to CALL REQUEST
CLEAR REQUEST Sent to release a connection
CLEAR CONFIRM Response to CLEAR CONNECTION
DATA Used to transport data
CREDIT For managing the window

State of a Connection
IDLE Not yet established
WAITING CONNECT called; CALL REQ. sent
QUEUED CALL REQ. arrived; LISTEN not called
ESTABLISHED Connection established
SENDING Waiting for permission to send TPDU
RECEIVING RECEIVE has just been called
DISCONNECTING DISCONNECT ahs just been called

06 – 28 Transport Layer/6.3 Example Protocol

Example Protocol – FSM (1/2)

LISTEN

Idle Waiting Queued Established

State

Sending Receiving
Dis-

connecting

CONNECT

DISCONNECT

SEND

RECEIVE

Call_req

Call_acc

Clear_req

Clear_conf

DataPkt

Credit

Timeout

Predicates

P1: Connection table full

P2: Call_req pending

P3: LISTEN pending

P4: Clear_req pending

P5: Credit available

Actions

A1: Send Call_acc

A2: Wait for Call_req

A3: Send Call_req

A4: Start timer

A5: Send Clear_conf

A6: Send Clear_req

 A7: Send message

 A8: Wait for credit

 A9: Send credit

A10: Set Clr_req_received flag

A11: Record credit

A12: Accept message

P1: ~/Idle

P2: A1/Estab

P2: A2/Idle

In
co

m
in

g
pa

ck
et

s
C

lo
ck

P
rim

iti
ve

s

∼/Estab

P1: ~/Idle

P1: A3/Wait

P4: A5/Idle

P4: A6/Disc

P5: A7/Estab

P5: A8/Send

A9/Receiving

P3: A1/Estab

P3: A4/Queu'd

∼/Estab

∼/Idle ∼/Idle

∼/Idle

A10/Estab A10/Estab A10/Estab

A12/Estab

A11/Estab A7/Estab

∼/Idle

06 – 29 Transport Layer/6.3 Example Protocol

Example Protocol – FSM (2/2)

ESTAB-

LISHED

DISCON-

NECTING

QUEUED

TIMEOUT

CALL REQ

CONNECT

LISTENCALL ACC

SEND

RECEIVECREDIT,

CLEAR REQ

DATA,

CLEAR REQ

CLEAR REQ, CLEAR CONF

LI
S

T
E

N
,

C
A

LL
 R

E
Q

D
IS

C
O

N
N

E
C

T

D
IS

C
O

N
N

E
C

T

CLEAR REQ

WAITING

RECEIVINGSENDING

IDLE

06 – 30 Transport Layer/6.3 Example Protocol

UDP

Essence: The User Datagram Protocol is essentially
just a transport-level version of IP.

32 Bits

Source port

UDP length

Destination port

UDP checksum

Observation: UDP is simple: no flow control, no error
control, no retransmissions

Question: So why not use IP instead?

06 – 31 Transport Layer/6.4 UDP

RPC

Observation: UDP is widely used for simple client-
server communication in which a procedure is made
available to remote clients (Remote Procedure Call).
The call (including its parameters) is shipped to the
server:

Client CPU

Client

stub

Client

2

1

Operating system

Server CPU

Server

stub

4

3

5

Operating system

Server

Network

1. Client calls the procedure at a local stub
2. Client stub marshalls request: it puts everything

into a (UDP) message
3. The message is transferred over the network
4. The server stub unmarshalls the message...
5. ... and calls the local implementation of the pro-

cedure.

Question: What’s the difficulty with RPCs?

06 – 32 Transport Layer/6.4 UDP

RTP

Problem: Can we support multimedia streaming over
the Internet? The Real-Time Transport Protocol pro-
vides some best-effort support.

Multimedia application

RTP

Socket interface

UDP

IP

Ethernet

(a) (b)

Ethernet

header

IP

header

UDP

header

RTP

header

RTP payload

UDP payload

IP payload

Ethernet payload

User

space

OS�
Kernel

Essence: RTP essentially just multiplexes a number
of multimedia streams into a single UDP stream. The
receiver is responsible for compensating missing pack-
ets (which is highly application dependent).

Real-time: RTP packets can be timestamped: pack-
ets belonging to the same substream can receive a
timestamp indicating how far off they are with respect
to their predecessor. This approach allows the system
to reduce jitter. In addition, timestamps can be used
to synchronize multiple substreams.

06 – 33 Transport Layer/6.4 UDP

Transmission Control Protocol
(TCP)

• Connection-oriented service that supports byte
streams (not message streams). A sender may
send eight 512-byte packets that are received as
two chunks of 1024 bytes, and one of 2048 bytes.

• Transport address consists of a 16-bit port num-
ber, which augments the underlying IP address.

• TCP ensures reliable, point–to–point connections.
No support for multicasting or broadcasting.

• A TCP TPDU is called a segment, consisting of
(minimal) 20-byte header, and maximum total length
of 65,535 bytes. A segment is fragmented by the
network layer when it is larger than the network’s
maximum transfer unit (MTU).

06 – 34 Transport Layer/6.5 TCP

TCP Header
32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP

header

length

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

Window size

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

• Acknowledgments are piggybacked when ACK =
1.

• SYN is for connection setup (ACK = 0: request;
ACK = 1: accepted).

• FIN is for connection release. Data sent before
the release is not lost.

• URG indicates immediate processing and trans-
mission: the receiver is signalled.

06 – 35 Transport Layer/6.5 TCP

TCP Connection Management

Connection establishment: Uses three-way hand-
shake protocol.

Connection release: To be thought of as indepen-
dent releases of two simplex connections:

State Textlist
CLOSED No connection active or pending
LISTEN Server waiting for conn. request
SYN RCVD Conn. request has arrived; wait for ACK
SYN SENT Conn. request just sent; wait for SYN+ACK
ESTABLISHED Data can be sent and received
FIN WAIT 1 Client just sent conn. release
FIN WAIT 2 Server just agreed to release connection
TIMED WAIT Wait for all packets to die
CLOSING Client & server both tried to close
CLOSE WAIT Other side initiated release
LAST ACK Wait for all packets to die

06 – 36 Transport Layer/6.5 TCP

TCP Connection Management
Release

CLOSED

LISTEN

ESTABLISHED

CLOSING CLOSE

WAIT

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)

LISTEN/–

SYN/SYN + ACK

SYN

 RCVD

FIN

WAIT 1

TIME

WAIT

LAST

ACK

FIN

WAIT 2

SYN

 SENT

RST/–

ACK/–

(Active close)

FIN/ACK

FIN + ACK/ACK

FIN/ACK

ACK/–

ACK/–

ACK/–

SEND/SYN

SYN/SYN + ACK (simultaneous open)

(Data transfer state)

SYN + ACK/ACK

(Step 3 of the 3-way handshake)

CLOSE/FIN

CLOSE/FIN FIN/ACK

CLOSE/–

CLOSE/–

CLOSE/FIN

CLOSED

(Passive close)

(Timeout/)

(Go back to start)

(Step 2 of the 3-way handshake)

06 – 37 Transport Layer/6.5 TCP

TCP Window Management (1/2)

Basic idea: The receiver sends an acknowledgment
for the next byte that can be sent in the current stream,
and the maximum number of bytes that may be sent.

Application

does a 2K

write

Application

does a 2K

write

Application

reads 2K

Sender is

blocked

Sender may

send up to 2K

Receiver's

buffer

0 4K

2K

2K

Empty

Full

2K SEQ = 0

2K SEQ = 2048

1K SEQ = 4096

ACK = 2048 WIN = 2048

ACK = 4096 WIN = 0

ACK = 4096 WIN = 2048

2 K1K

Sender Receiver

06 – 38 Transport Layer/6.5 TCP

TCP Window Management (2/2)

Important: The TCP entity is not obliged to immedi-
ately transmit data that the application hands over: it
can do as much buffering as it likes. Same goes for
acknowledgments.

Example: Interactive, character-oriented applications.
Rather than sending one byte at a time, buffer as much
characters as possible until the previous batch is ac-
knowledged (Nagle’s algorithm). Note: we’re always
stuck to at least 40 bytes of overhead per TPDU.

Example: Avoid the silly window syndrome where
the server is reading one byte at a time (and acknowl-
edges one at a time). Instead, the receiver should wait
until it can receive a reasonable amount of bytes in a
row.

06 – 39 Transport Layer/6.5 TCP

TCP Congestion Control (1/2)

Problem: As before, the transport layer has to take
into account that the underlying network can be the
bottleneck. Question is how to detect and react to
congestion.

Solution: use a congestion window next to the win-
dow granted by the receiver. The actual window size
is the minimum of the two.

• Initialize congestion window to maximum segment
size to be used in the connection. Send it off. If it
gets acknowledged, double the size. Repeat un-
til failure. Leads to initial congestion window size
(slow start).

• In addition, use a threshold. On a timeout, lower
the threshold to 50 % of the congestion window
size, do a slow start (exponential) until new thresh-
old, and add maximum segment size to conges-
tion window size after that (linear growth).

06 – 40 Transport Layer/6.5 TCP

TCP Congestion Control (2/2)

44

40

36

32

28

24

20

16

12

8

4

0
0 2 4 6 8 10 12

Timeout

Threshold

14 16 18 20 22 24

C
on

ge
st

io
n

w
in

do
w

 (
ki

lo
by

te
s)

Transmission number

Threshold

06 – 41 Transport Layer/6.5 TCP

TCP Timer Management

Main issue: How do we determine the best timeout
value for retransmitting segments in the face of a large
standard deviation of round-trip delays:

T T1 T20.3

0.2

0.1

0
0 10 20

Round-trip time (msec)

(a) (b)

P
ro

ba
bi

lit
y

0.3

0.2

0.1

0

P
ro

ba
bi

lit
y

30 40 50 0 10 20
Round-trip time (msec)

30 40 50

RT T best current estimate of round-trip delay
D estimate of deviation of round-trip delays
M measured round-trip delay

RT T = αRT T +(1−α)M

D = αD+(1−α)|RTT −M|

timeout = RT T +4 ·D

06 – 42 Transport Layer/6.5 TCP

Wireless TCP

Problem: TCP assumes that IP is running across
wires. When packets are lost, TCP assumes this is
caused by congestion and slows down. In wireless
environments, packets get lost due reliability issues.
In those cases, TCP should do the opposite: try harder.

Solution #1: Split TCP connections to distinguished
wired/wireless IP:

Sender Base

station

Mobile

host

Antenna

TCP #1

TCP #2

Router

Solution #2: Let the base station do at least some
retransmissions, but without informing the source. Ef-
fectively, the base station makes an attempt to im-
prove the reliability of IP as perceived by TCP.

06 – 43 Transport Layer/6.5 TCP

Client–Server TCP

Transactional TCP: A TCP-based transport protocol
aimed to support client–server interaction

Client Server

SYN

SYN, ACK(SYN) 2

6

2

7

8

3

1

3

4

5

9

1

ACK(SYN)

ACK(FIN)

Time

Client Server

SYN, request, FIN

ACK(FIN)

(a) (b)

SYN, ACK(FIN), reply, FIN

Timerequest

FIN

ACK(request + FIN)

FIN

reply

06 – 44 Transport Layer/6.5 TCP

06 – 45 Transport Layer/6.5 TCP

